(New page: Let <math>\chi (w) = \pi \delta (w - 6) - \pi \delta (w - 3)</math>) |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | Let <math>\chi (w) = \pi \delta (w - 6) - \pi \delta (w - | + | [[Category:problem solving]] |
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:inverse Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of inverse Fourier transform (CT signals) == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
+ | |||
+ | Let <font size = '4'><math>\chi (w) = \frac{\pi}{j} 4\delta (w - 6) - \frac{\pi}{j} 4\delta (w + 6)</math></font> | ||
+ | |||
+ | Then <math>x(t) = \frac{1}{2\pi}\int^{\infty}_{-\infty} \chi (w) e^{jwt}dw</math> | ||
+ | |||
+ | <math>x(t) = \frac{1}{2\pi} [\frac{4\pi}{j}\int^{\infty}_{-\infty} \delta(w-6)e^{jwt} dw - \frac{4\pi}{j} \int_{-\infty}^{\infty} \delta(w+6)e^{jwt} dw]</math> | ||
+ | |||
+ | <math>x(t) = \frac{2}{j}e^{j6t} - \frac{2}{j}e^{-j6t} = 4[\frac{e^{j6t} - e^{-j6t}}{2j}] = 4sin(6t)</math> | ||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:51, 16 September 2013
Example of Computation of inverse Fourier transform (CT signals)
A practice problem on CT Fourier transform
Let $ \chi (w) = \frac{\pi}{j} 4\delta (w - 6) - \frac{\pi}{j} 4\delta (w + 6) $
Then $ x(t) = \frac{1}{2\pi}\int^{\infty}_{-\infty} \chi (w) e^{jwt}dw $
$ x(t) = \frac{1}{2\pi} [\frac{4\pi}{j}\int^{\infty}_{-\infty} \delta(w-6)e^{jwt} dw - \frac{4\pi}{j} \int_{-\infty}^{\infty} \delta(w+6)e^{jwt} dw] $
$ x(t) = \frac{2}{j}e^{j6t} - \frac{2}{j}e^{-j6t} = 4[\frac{e^{j6t} - e^{-j6t}}{2j}] = 4sin(6t) $