(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
<math> X(w) = \frac{2sin{3(w-2\pi)}}{w-2\pi}\,</math><br><br>
 
<math> X(w) = \frac{2sin{3(w-2\pi)}}{w-2\pi}\,</math><br><br>
 
We already knew that when <math>  x(t) = \frac{sinWt}{\pi t}, X(w) = 1 for |w|<W. \,</math><br><br>
 
We already knew that when <math>  x(t) = \frac{sinWt}{\pi t}, X(w) = 1 for |w|<W. \,</math><br><br>
<math>when x(t) = x(t-t_0), X(w) = e^{-jwt_0}X(jw)</math><br><br>   
+
when<math> x(t) = x(t-t_0), X(w) = e^{-jwt_0}X(jw)</math><br><br>   
 
W is 3 , and this was delayed <math>2\pi\,</math><br><br>
 
W is 3 , and this was delayed <math>2\pi\,</math><br><br>
 +
 +
So <math> x(t) = e^{j2\pi t} </math> for <math> |t| < 3 \,</math><br><br>
 +
And <math> x(t) = 0 \,</math> for otherwise
 +
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:49, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


$ X(w) = \frac{2sin{3(w-2\pi)}}{w-2\pi}\, $

We already knew that when $ x(t) = \frac{sinWt}{\pi t}, X(w) = 1 for |w|<W. \, $

when$ x(t) = x(t-t_0), X(w) = e^{-jwt_0}X(jw) $

W is 3 , and this was delayed $ 2\pi\, $

So $ x(t) = e^{j2\pi t} $ for $ |t| < 3 \, $

And $ x(t) = 0 \, $ for otherwise



Back to Practice Problems on CT Fourier transform

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett