(Brian Thomas Rhea 5.3)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
'''Problem: (From Oppenheim/Wisllsky, 4.22 b.)''' Find <math>F^{-1} (cos(4w+\frac{\pi}{3})).</math> (<math>F^{-1}</math> meaning the inverse Fourier Transform of said function.)
 
'''Problem: (From Oppenheim/Wisllsky, 4.22 b.)''' Find <math>F^{-1} (cos(4w+\frac{\pi}{3})).</math> (<math>F^{-1}</math> meaning the inverse Fourier Transform of said function.)
  
Line 28: Line 38:
  
 
<math> =  \frac{1}{2} ( e^{j\frac{\pi}{3}} \delta(t + 4)  + e^{-j\frac{\pi}{3}} \delta(t-4) )</math>
 
<math> =  \frac{1}{2} ( e^{j\frac{\pi}{3}} \delta(t + 4)  + e^{-j\frac{\pi}{3}} \delta(t-4) )</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:49, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Problem: (From Oppenheim/Wisllsky, 4.22 b.) Find $ F^{-1} (cos(4w+\frac{\pi}{3})). $ ($ F^{-1} $ meaning the inverse Fourier Transform of said function.)


Solution: First, observe that $ cos(4w+\frac{\pi}{3}) = \frac{1}{2} (e^{j4w} e^{j\frac{\pi}{3}} + e^{-j4w} e^{-j\frac{\pi}{3}}) $. First, let's try to apply the formula for the inverse Fourier transform directly:

$ F^{-1} (cos(4w+\frac{\pi}{3})) = \int_{-\infty}^\infty cos(4w+\frac{\pi}{3}) e^{jwt} dt $

$ = \frac{1}{2\pi} \int_{-\infty}^\infty \frac{1}{2} (e^{j4w} e^{j\frac{\pi}{3}} + e^{-j4w} e^{-j\frac{\pi}{3}}) e^{jwt} dt $

$ = \frac{1}{2\pi} \int_{-\infty}^\infty \frac{1}{2} (e^{j4w} e^{j\frac{\pi}{3}} + e^{-j4w} e^{-j\frac{\pi}{3}}) e^{jwt} dt $

$ = \frac{1}{2\pi} \int_{-\infty}^\infty \frac{1}{2} e^{j(t+4)w} e^{j\frac{\pi}{3}} + e^{j(t-4)w} e^{-j\frac{\pi}{3}} dt $


Noting that integrating this is a very difficult undertaking, let's try another approach. Say, for instance, that we were to find x(t) such that $ F(x(t)) = e^{-jwt_0} $. We'll take the highly-educated guess that $ x(t) = \delta(t-t_0) $:

$ F(\delta(t-t_0)) = \int_{-\infty}^\infty \delta(t-t_0) e^{-jwt} dt = e^{-jwt_0} $


So, we can conclude that since $ F(\delta(t-t_0)) = e^{-jwt_0} $, $ F^{-1}(e^{-jwt_0}) = \delta(t-t_0) $. Applying this to our problem at hand:

$ F^{-1} (cos(4w+\frac{\pi}{3})) = F^{-1} ( \frac{1}{2} (e^{j4w} e^{j\frac{\pi}{3}} + e^{-j4w} e^{-j\frac{\pi}{3}})) $

$ = \frac{1}{2} (F^{-1} (e^{j4w}) e^{j\frac{\pi}{3}} + F^{-1} (e^{-j4w}) e^{-j\frac{\pi}{3}}) $

$ = \frac{1}{2} ( e^{j\frac{\pi}{3}} \delta(t + 4) + e^{-j\frac{\pi}{3}} \delta(t-4) ) $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva