(New page: <math>X(\omega) = \frac{j\omega}{7 + j\omega}</math> <math>x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty}\frac{j\omega e^{j\omega t}}{7 + j\omega}d\omega</math> <math>= \frac{j\ome...) |
|||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:inverse Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of inverse Fourier transform (CT signals) == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
<math>X(\omega) = \frac{j\omega}{7 + j\omega}</math> | <math>X(\omega) = \frac{j\omega}{7 + j\omega}</math> | ||
Line 7: | Line 16: | ||
<math>= \frac{d}{dt}e^{-7t}u(t)</math> | <math>= \frac{d}{dt}e^{-7t}u(t)</math> | ||
+ | |||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:48, 16 September 2013
Example of Computation of inverse Fourier transform (CT signals)
A practice problem on CT Fourier transform
$ X(\omega) = \frac{j\omega}{7 + j\omega} $
$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty}\frac{j\omega e^{j\omega t}}{7 + j\omega}d\omega $
$ = \frac{j\omega}{2\pi} \int_{-\infty}^{\infty}\frac{e^{j\omega t}}{7 + j\omega}d\omega $
$ = \frac{d}{dt}e^{-7t}u(t) $