(New page: Let the signal <math>X(\omega)</math> be equal to: <math>X(\omega) = \delta(\omega) + \delta(\omega - 2) - \delta(\omega - 3) \,</math> The Inverse Fourier Transform of a signal in Cont...)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 +
 
Let the signal <math>X(\omega)</math> be equal to:
 
Let the signal <math>X(\omega)</math> be equal to:
  
Line 14: Line 25:
  
 
<math>x(t) = \frac{1}{2\pi}(e^{j\omega t} +e^{j2\omega t} - e^{j3\omega t}) \,</math>
 
<math>x(t) = \frac{1}{2\pi}(e^{j\omega t} +e^{j2\omega t} - e^{j3\omega t}) \,</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:46, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform



Let the signal $ X(\omega) $ be equal to:

$ X(\omega) = \delta(\omega) + \delta(\omega - 2) - \delta(\omega - 3) \, $


The Inverse Fourier Transform of a signal in Continuous Time is:

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega \, $


Using this, we obtain:

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}(\delta(\omega)e^{j\omega t} + \delta(\omega - 2)e^{j\omega t} - \delta(\omega - 3)e^{j\omega t}) d\omega \, $

$ x(t) = \frac{1}{2\pi}(e^{j\omega t} +e^{j2\omega t} - e^{j3\omega t}) \, $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics