(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
The formula of the inverse transform is:
 
The formula of the inverse transform is:
  
Line 11: Line 20:
 
:<math>x(t) = \int_{-\infty}^{ \infty} \delta(w - 2\pi) e^{jwt}dw \,</math>
 
:<math>x(t) = \int_{-\infty}^{ \infty} \delta(w - 2\pi) e^{jwt}dw \,</math>
  
:<math>e^{j2 \pi t}\,</math>
+
:<math>x(t) = e^{j2 \pi t}\,</math>
 +
 
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:45, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


The formula of the inverse transform is:

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{ \infty} X(jw)e^{jwt}dw \, $

Suppose we have $ 2 \pi \delta(w - 2\pi) $ (From the 'not so easy' question in class)

Substituting that into the formula:

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{ \infty} 2 \pi \delta(w - 2\pi) e^{jwt}dw \, $
$ x(t) = \int_{-\infty}^{ \infty} \delta(w - 2\pi) e^{jwt}dw \, $
$ x(t) = e^{j2 \pi t}\, $

Back to Practice Problems on CT Fourier transform

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010