(Inverse Fourier transform of X(w))
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
== Specify a Fourier transform <math>X(w)</math> ==
 
== Specify a Fourier transform <math>X(w)</math> ==
 
:<math>  X(w)=2\pi \delta\left ( w- \frac{\pi}{4}\right )+2\pi \delta\left ( w+ \frac{\pi}{4}\right )    </math>
 
:<math>  X(w)=2\pi \delta\left ( w- \frac{\pi}{4}\right )+2\pi \delta\left ( w+ \frac{\pi}{4}\right )    </math>
Line 12: Line 22:
 
\\& =2cos\left (\frac{\pi}{4}\right ) t
 
\\& =2cos\left (\frac{\pi}{4}\right ) t
  
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]
  
  

Revision as of 11:43, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Specify a Fourier transform $ X(w) $

$ X(w)=2\pi \delta\left ( w- \frac{\pi}{4}\right )+2\pi \delta\left ( w+ \frac{\pi}{4}\right ) $

Inverse Fourier transform of $ X(w) $

$ \begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X( \omega)e^{j\omega t}d\omega \\& =\frac{1}{2\pi}\int_{-\infty}^{\infty}2\pi \delta\left ( w- \frac{\pi}{4}\right )e^{j\omega t}d\omega+ \frac{1}{2\pi}\int_{-\infty}^{\infty}2\pi \delta\left ( w+ \frac{\pi}{4}\right )e^{j\omega t}d\omega \\& =\int_{-\infty}^{\infty}\delta\left ( w- \frac{\pi}{4}\right )e^{j\omega t}d\omega+ \int_{-\infty}^{\infty}\delta\left ( w+ \frac{\pi}{4}\right )e^{j\omega t}d\omega \\& =e^{-j\frac{\pi}{4}t}+e^{j\frac{\pi}{4}t} \\& =2cos\left (\frac{\pi}{4}\right ) t ---- [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] \end{align} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal