(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
Compute the inverse fourier transform of the fourier transform below:
 
Compute the inverse fourier transform of the fourier transform below:
  
Line 10: Line 20:
 
<math>\,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{(j\omega - 1)t}\,d\omega \,</math>
 
<math>\,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{(j\omega - 1)t}\,d\omega \,</math>
  
<math>\,x(t)=\frac{1}{2\pi} e^{(j(-3\pi) - 1)t}\,d\omega \,</math>
+
<math>\,x(t)=\frac{1}{2\pi} e^{(j(-3\pi) - 1)t}\,</math>
 +
 
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:42, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Compute the inverse fourier transform of the fourier transform below:

$ \,\mathcal{X}(\omega)= \delta(\omega - 3\pi) e^{-t}\, $


$ \,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \, $

$ \,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{-t} e^{j\omega t}\,d\omega \, $

$ \,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{(j\omega - 1)t}\,d\omega \, $

$ \,x(t)=\frac{1}{2\pi} e^{(j(-3\pi) - 1)t}\, $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn