(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
==Inverse Fourier Transform==
 
==Inverse Fourier Transform==
  
Line 23: Line 33:
 
<math>=\frac{3}{2j}e^{j4\pi t}-\frac{3}{2j}e^{-j4\pi t}+e^{j4\pi t} + e^{-j4\pi t}</math>
 
<math>=\frac{3}{2j}e^{j4\pi t}-\frac{3}{2j}e^{-j4\pi t}+e^{j4\pi t} + e^{-j4\pi t}</math>
  
<math>= \frac{3(e^{j4\pi t} + e^{-j4\pi t})}{2j}+\frac{2(e^{j4\pi t} + e^{-j4\pi t})}{2}</math>
+
<math>= \frac{3(e^{j4\pi t} - e^{-j4\pi t})}{2j}+\frac{2(e^{j4\pi t} + e^{-j4\pi t})}{2}</math>
  
 +
<font size="4.5">
 
<math>=3sin(4\pi t) + 2 cos(4\pi t)</math>
 
<math>=3sin(4\pi t) + 2 cos(4\pi t)</math>
 +
</font>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:41, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega $



$ X(\omega) = \pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j) $



$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}[\pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)]e^{j\omega t}d\omega $

$ =\frac{2-3j}{2}\int_{-\infty}^{\infty}\delta(\omega - 4\pi)e^{j\omega t}d\omega + \frac{2+3j}{2}\int_{-\infty}^{\infty}\delta(\omega + 4\pi)e^{j\omega t}d\omega $

$ =\frac{2-3j}{2}e^{j4\pi t} + \frac{2+3j}{2}e^{-j4\pi t} $

$ =e^{j4\pi t}-\frac{3j}{2}e^{j4\pi t} + e^{-j4\pi t}+\frac{3j}{2}e^{-j4\pi t} $

$ =\frac{3}{2j}e^{j4\pi t}-\frac{3}{2j}e^{-j4\pi t}+e^{j4\pi t} + e^{-j4\pi t} $

$ = \frac{3(e^{j4\pi t} - e^{-j4\pi t})}{2j}+\frac{2(e^{j4\pi t} + e^{-j4\pi t})}{2} $

$ =3sin(4\pi t) + 2 cos(4\pi t) $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang