(10 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:inverse Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of inverse Fourier transform (CT signals) == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
+ | |||
==Inverse Fourier Transform== | ==Inverse Fourier Transform== | ||
− | <math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{ | + | <math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega</math> |
+ | |||
+ | |||
+ | |||
<font size="4.5"> | <font size="4.5"> | ||
Line 7: | Line 20: | ||
</font> | </font> | ||
− | <math>x(t)\frac{1}{2\pi}\int_{-\infty}^{\infty}[\pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)]e^{-j\omega t}d\omega</math> | + | |
+ | |||
+ | |||
+ | <math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}[\pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)]e^{j\omega t}d\omega</math> | ||
+ | |||
+ | <math>=\frac{2-3j}{2}\int_{-\infty}^{\infty}\delta(\omega - 4\pi)e^{j\omega t}d\omega + \frac{2+3j}{2}\int_{-\infty}^{\infty}\delta(\omega + 4\pi)e^{j\omega t}d\omega </math> | ||
+ | |||
+ | <math>=\frac{2-3j}{2}e^{j4\pi t} + \frac{2+3j}{2}e^{-j4\pi t}</math> | ||
+ | |||
+ | <math>=e^{j4\pi t}-\frac{3j}{2}e^{j4\pi t} + e^{-j4\pi t}+\frac{3j}{2}e^{-j4\pi t}</math> | ||
+ | |||
+ | <math>=\frac{3}{2j}e^{j4\pi t}-\frac{3}{2j}e^{-j4\pi t}+e^{j4\pi t} + e^{-j4\pi t}</math> | ||
+ | |||
+ | <math>= \frac{3(e^{j4\pi t} - e^{-j4\pi t})}{2j}+\frac{2(e^{j4\pi t} + e^{-j4\pi t})}{2}</math> | ||
+ | |||
+ | <font size="4.5"> | ||
+ | <math>=3sin(4\pi t) + 2 cos(4\pi t)</math> | ||
+ | </font> | ||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:41, 16 September 2013
Example of Computation of inverse Fourier transform (CT signals)
A practice problem on CT Fourier transform
Inverse Fourier Transform
$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega $
$ X(\omega) = \pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j) $
$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}[\pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)]e^{j\omega t}d\omega $
$ =\frac{2-3j}{2}\int_{-\infty}^{\infty}\delta(\omega - 4\pi)e^{j\omega t}d\omega + \frac{2+3j}{2}\int_{-\infty}^{\infty}\delta(\omega + 4\pi)e^{j\omega t}d\omega $
$ =\frac{2-3j}{2}e^{j4\pi t} + \frac{2+3j}{2}e^{-j4\pi t} $
$ =e^{j4\pi t}-\frac{3j}{2}e^{j4\pi t} + e^{-j4\pi t}+\frac{3j}{2}e^{-j4\pi t} $
$ =\frac{3}{2j}e^{j4\pi t}-\frac{3}{2j}e^{-j4\pi t}+e^{j4\pi t} + e^{-j4\pi t} $
$ = \frac{3(e^{j4\pi t} - e^{-j4\pi t})}{2j}+\frac{2(e^{j4\pi t} + e^{-j4\pi t})}{2} $
$ =3sin(4\pi t) + 2 cos(4\pi t) $