(New page: ==Computing the Inverse Fourier Transform== <math>\ X(\omega)= 8 \pi w \delta(w-9) + 2 \pi w^{3} \delta(w-4 \pi) </math> The inverse Fourier transform is defined as: <math> x(t) = int_{...) |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:inverse Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of inverse Fourier transform (CT signals) == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
==Computing the Inverse Fourier Transform== | ==Computing the Inverse Fourier Transform== | ||
Line 5: | Line 14: | ||
The inverse Fourier transform is defined as: | The inverse Fourier transform is defined as: | ||
− | <math> x(t) = int_{- | + | <math> x(t) = \int_{-\infty}^{\infty} \frac{X(w)}{2 \pi} e^{jwt} dw </math> |
+ | |||
+ | Using this formula to determine the signal: | ||
+ | |||
+ | <math>\ x(t) = \frac{8 \pi}{2 \pi} \int_{-\infty}^{\infty} w e^{jwt} \delta(w-9) dw + \frac{2}{2 \pi} \int_{-\infty}^{\infty}w^{3} \delta(w-4 \pi) e^{jwt} dw </math> | ||
+ | |||
+ | Now using the sifting property of the delta function we find that the signal is | ||
+ | |||
+ | <math>\ x(t) = 36 e^{j9t} + 64 \pi^{2} e^{j4\pi t} </math> | ||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:40, 16 September 2013
Example of Computation of inverse Fourier transform (CT signals)
A practice problem on CT Fourier transform
Computing the Inverse Fourier Transform
$ \ X(\omega)= 8 \pi w \delta(w-9) + 2 \pi w^{3} \delta(w-4 \pi) $
The inverse Fourier transform is defined as:
$ x(t) = \int_{-\infty}^{\infty} \frac{X(w)}{2 \pi} e^{jwt} dw $
Using this formula to determine the signal:
$ \ x(t) = \frac{8 \pi}{2 \pi} \int_{-\infty}^{\infty} w e^{jwt} \delta(w-9) dw + \frac{2}{2 \pi} \int_{-\infty}^{\infty}w^{3} \delta(w-4 \pi) e^{jwt} dw $
Now using the sifting property of the delta function we find that the signal is
$ \ x(t) = 36 e^{j9t} + 64 \pi^{2} e^{j4\pi t} $