(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:inverse Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of inverse Fourier transform (CT signals) == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
+ | |||
<math>X(\omega)=\cos{(6\omega + \pi/6)}</math> | <math>X(\omega)=\cos{(6\omega + \pi/6)}</math> | ||
Line 25: | Line 35: | ||
<math>\,\mathcal{X}(\omega)=\cos{(6\omega + \pi/6)} </math> | <math>\,\mathcal{X}(\omega)=\cos{(6\omega + \pi/6)} </math> | ||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:39, 16 September 2013
Example of Computation of inverse Fourier transform (CT signals)
A practice problem on CT Fourier transform
$ X(\omega)=\cos{(6\omega + \pi/6)} $
Start by guessing the solution:
$ X(t)=(1/2)e^{-j(\pi/6)}\delta(t-6)+(1/2)e^{j(\pi/6)}\delta(t+6) $
Then take the fourier transform of the guessed solution to make sure it's right...
$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}\,dt\, $
$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}[(1/2)e^{-j(\pi/6)}\delta(t-6)+(1/2)e^{j(\pi/6)}\delta(t+6)]e^{-j\omega t}\,dt, $
$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}(1/2)e^{-j(\pi/6)}\delta(t-6)e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}(1/2)e^{j(\pi/6)}\delta(t+6)e^{-j\omega t}\,dt\, $
$ \,\mathcal{X}(\omega)=(1/2)e^{-j(\pi/6)}\int_{-\infty}^{+\infty}\delta(t-6)e^{-j\omega t}\,dt + (1/2)e^{j(\pi/6)}\int_{-\infty}^{+\infty}\delta(t+6)e^{-j\omega t}\,dt\, $
$ \,\mathcal{X}(\omega)=(1/2)e^{-j(\pi/6)}e^{-6jt} + (1/2)e^{j(\pi/6)}e^{6jt} $
$ \,\mathcal{X}(\omega)=(1/2)e^{-j(6t + \pi/6)} + (1/2)e^{j(6t + \pi/6)} $
$ \,\mathcal{X}(\omega)=\cos{(6\omega + \pi/6)} $