(18 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 +
==FOURIER TRANSFORM==
 +
 +
 
<math> x(t) = e^{-3|t-2|} </math>
 
<math> x(t) = e^{-3|t-2|} </math>
  
Line 5: Line 17:
 
When  
 
When  
  
<math> t-2 < 0 \rightarrow x_1(t) = e^{3t-6} </math>
+
<math> t-1 < 0 \rightarrow x_1(t) = e^{3t-3} </math>
  
 
and when,
 
and when,
  
<math> t-2 >0 \rightarrow x_2(t) = e^{-3t-6} </math>
+
<math> t-1 >0 \rightarrow x_2(t) = e^{-3t+3} </math>
  
 
So, we can then compute the Fourier series by adding the integrals of each diferent case.
 
So, we can then compute the Fourier series by adding the integrals of each diferent case.
Line 15: Line 27:
 
<math>\ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt </math>
 
<math>\ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt </math>
  
<math> \mathcal{X}(\omega) = \int_{-\infty}^{2} e^{3t-6}e^{-j\omega t}\,dt + \int_{2}^{\infty} e^{-3t-6}e^{-j\omega t} \,dt </math>
+
<math> \mathcal{X}(\omega) = \int_{-\infty}^{1} e^{3t-3}e^{-j\omega t}\,dt + \int_{1}^{\infty} e^{-3t+3}e^{-j\omega t} \,dt </math>
 +
 
 +
<math> \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{3t-j\omega t}\,dt + e^{3} \int_{1}^{\infty} e^{-3t-j\omega t} \,dt </math>
 +
 
 +
<math> \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{t(3-j\omega)}\,dt + e^{3} \int_{1}^{\infty} e^{-t(3+j\omega)} \,dt </math>
 +
 
 +
<math> \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{1}_{-\infty} } \frac{1}{e^{3}} + {\left. -\frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_1 } e^{3}\,</math>
  
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{2} e^{3t-j\omega t}\,dt + \frac{1}{e^{6}} \int_{2}^{\infty} e^{-3t-j\omega t} \,dt </math>
+
<math> \mathcal{X}(\omega) = \frac{1}{e^{3}} \frac{e^{3-j\omega}}{3-j\omega} + e^{3} \frac{e^{-3-j\omega}}{3+j\omega} </math>
  
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{2} e^{t(3-j\omega)}\,dt + \frac{1}{e^{6}} \int_{2}^{\infty} e^{-t(3+j\omega)} \,dt </math>
+
<math> \mathcal{X}(\omega) = \frac{e^{-j\omega}}{3-j\omega} + \frac{e^{-j\omega}}{3+j\omega} </math>
  
<math> \frac{1}{e^{6}}({\left. \frac{e^{-(j\omega + 2)t}}{-(j\omega +2)} \right]^{\infty}_0 }) + \frac{1}{e^{6}}({\left. \frac{e^{-(j\omega + 4)t}}{-(j\omega +4)} \right]^2_0 })\,</math>
+
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:37, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


FOURIER TRANSFORM

$ x(t) = e^{-3|t-2|} $

Noticing that there is an absolute value, we can proceed to divide in tow cases.

When

$ t-1 < 0 \rightarrow x_1(t) = e^{3t-3} $

and when,

$ t-1 >0 \rightarrow x_2(t) = e^{-3t+3} $

So, we can then compute the Fourier series by adding the integrals of each diferent case.

$ \ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \int_{-\infty}^{1} e^{3t-3}e^{-j\omega t}\,dt + \int_{1}^{\infty} e^{-3t+3}e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{3t-j\omega t}\,dt + e^{3} \int_{1}^{\infty} e^{-3t-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{t(3-j\omega)}\,dt + e^{3} \int_{1}^{\infty} e^{-t(3+j\omega)} \,dt $

$ \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{1}_{-\infty} } \frac{1}{e^{3}} + {\left. -\frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_1 } e^{3}\, $

$ \mathcal{X}(\omega) = \frac{1}{e^{3}} \frac{e^{3-j\omega}}{3-j\omega} + e^{3} \frac{e^{-3-j\omega}}{3+j\omega} $

$ \mathcal{X}(\omega) = \frac{e^{-j\omega}}{3-j\omega} + \frac{e^{-j\omega}}{3+j\omega} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett