(New page: <math> x(t)={e^{-3|t|}, |t|<1}</math><p> <math> x(t)=0, |t|>1 </math>) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | <math> x(t)={e^{- | + | [[Category:problem solving]] |
− | + | [[Category:ECE301]] | |
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of Fourier transform of a CT SIGNAL == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
+ | |||
+ | Computer the Fourier Transform of the Following: | ||
+ | <math>\, x(t)={e^{-2|t|}, |t|<1}\,</math> | ||
+ | <math>\, x(t)=0, |t|>1 \,</math> | ||
+ | |||
+ | <math>\,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\,</math> | ||
+ | |||
+ | <math>\,\mathcal{X}(\omega)=\int_{-1}^{0}e^{2t}e^{-j\omega t}\,dt\ + \int_{0}^{1}e^{-2t}e^{-j\omega t}\,dt\,</math> | ||
+ | |||
+ | |||
+ | <math>\,\mathcal{X}(\omega)=\int_{-1}^{0}e^{t(2-j\omega)}\,dt\ + \int_{0}^{1}e^{-t(2+j\omega)}\,dt\,</math> | ||
+ | |||
+ | <math>\,\mathcal{X}(\omega)={\left. \frac{e^{t(2-j\omega )}}{(2-j\omega )}\right]_{-1}^{0} + {\left. \frac{e^{-t(2+j\omega )}}{(2+j\omega )}\right]_0^{1}}}\,</math> | ||
+ | |||
+ | |||
+ | <math>\,\mathcal{X}(\omega)=\frac{1}{2-j\omega} - \frac{e^{-(2-j\omega)}}{2-j\omega} + \frac{e^{-(2+j\omega)}}{2+j\omega} - \frac{1}{2+j\omega} \,</math> | ||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:36, 16 September 2013
Example of Computation of Fourier transform of a CT SIGNAL
A practice problem on CT Fourier transform
Computer the Fourier Transform of the Following:
$ \, x(t)={e^{-2|t|}, |t|<1}\, $ $ \, x(t)=0, |t|>1 \, $
$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $
$ \,\mathcal{X}(\omega)=\int_{-1}^{0}e^{2t}e^{-j\omega t}\,dt\ + \int_{0}^{1}e^{-2t}e^{-j\omega t}\,dt\, $
$ \,\mathcal{X}(\omega)=\int_{-1}^{0}e^{t(2-j\omega)}\,dt\ + \int_{0}^{1}e^{-t(2+j\omega)}\,dt\, $
$ \,\mathcal{X}(\omega)={\left. \frac{e^{t(2-j\omega )}}{(2-j\omega )}\right]_{-1}^{0} + {\left. \frac{e^{-t(2+j\omega )}}{(2+j\omega )}\right]_0^{1}}}\, $
$ \,\mathcal{X}(\omega)=\frac{1}{2-j\omega} - \frac{e^{-(2-j\omega)}}{2-j\omega} + \frac{e^{-(2+j\omega)}}{2+j\omega} - \frac{1}{2+j\omega} \, $