(→Fourier Transform) |
|||
(4 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | [[Category:problem solving]] | |
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of Fourier transform of a CT SIGNAL == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
== Fourier Transform == | == Fourier Transform == | ||
Signal: x(t) = <math> e^{3|t-1|}</math> | Signal: x(t) = <math> e^{3|t-1|}</math> | ||
Line 5: | Line 12: | ||
<math>X(j \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \!</math> | <math>X(j \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \!</math> | ||
− | <math> = \int_{-\infty}^{\infty} e^{ | + | <math> = \int_{-\infty}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \!</math> |
+ | |||
+ | <math> = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \!</math> + <math> \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \!</math> | ||
+ | |||
+ | |||
+ | = <math> \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j \omega}}{2 - j \omega} </math> | ||
+ | |||
+ | |||
+ | = <math> \frac{4e^{-j \omega}}{4 + \omega ^2} | ||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:31, 16 September 2013
Example of Computation of Fourier transform of a CT SIGNAL
A practice problem on CT Fourier transform
Fourier Transform
Signal: x(t) = $ e^{3|t-1|} $
$ X(j \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \! $
$ = \int_{-\infty}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $
$ = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $ + $ \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \! $
= $ \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j \omega}}{2 - j \omega} $
= $ \frac{4e^{-j \omega}}{4 + \omega ^2} ---- [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] $