(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of Fourier transform of a CT SIGNAL == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
== The Signal == | == The Signal == | ||
− | <math>(t e^{-4t} \sin{6 \pi t}) u(t)</math> | + | <math>(t e^{-4t} \sin{6 \pi t}) u(t) \ </math> |
Line 29: | Line 37: | ||
− | <math>X(\omega)= \frac{-1}{2 j (j(6 \pi - \omega)-4)} | + | <math>X(\omega)= \frac{-1}{2 j (j(6 \pi - \omega)-4)} + \frac{1}{2 j (-j(6 \pi + \omega)-4)}</math> |
+ | |||
+ | |||
+ | ---- | ||
+ | ==Comments/questions== | ||
+ | *A faster/easier way to solve this problem would be to use the Multiplication Property | ||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:27, 16 September 2013
Contents
Example of Computation of Fourier transform of a CT SIGNAL
A practice problem on CT Fourier transform
The Signal
$ (t e^{-4t} \sin{6 \pi t}) u(t) \ $
The Fourier Transform
$ X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt $
$ X(\omega)=\int_{-\infty}^{\infty} (te^{-4t}\sin{6\pi t})u(t) e^{-j\omega t}dt $
$ X(\omega)=\int_{0}^{\infty} (te^{-4t}\sin{6\pi t}) e^{-j\omega t}dt $
$ X(\omega)=\int_{0}^{\infty} (te^{-4t})(\frac {e^{j 6 \pi t} - e^{-j 6 \pi t}}{2 j}) e^{-j\omega t}dt $
$ X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt $
$ X(\omega)=\int_{0}^{\infty} \frac {t e^{t(j(6 \pi - \omega)-4)}}{2 j} - \frac {t e^{t(-j(6 \pi + \omega)-4)}}{2 j}dt $
$ X(\omega)= \frac{(t (j(6 \pi - \omega)-4) - 1) e^{t(j(6 \pi - \omega)-4)}}{2 j (j(6 \pi - \omega)-4)} - \frac{(t (-j(6 \pi + \omega)-4) - 1) e^{t(-j(6 \pi + \omega)-4)}}{2 j (-j(6 \pi + \omega)-4)}\bigg]_0^\infty $
$ X(\omega)= \frac{-1}{2 j (j(6 \pi - \omega)-4)} + \frac{1}{2 j (-j(6 \pi + \omega)-4)} $
Comments/questions
- A faster/easier way to solve this problem would be to use the Multiplication Property