(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
Compute the fourier transform of this signal below:
 
Compute the fourier transform of this signal below:
  
Line 11: Line 19:
 
<math>\,\mathcal{X}(\omega)=\int_{-1}^{\infty} e^{-(7+j\omega )t} dt + \int_{1}^{\infty} e^{-(23+j\omega )t} dt\,</math>
 
<math>\,\mathcal{X}(\omega)=\int_{-1}^{\infty} e^{-(7+j\omega )t} dt + \int_{1}^{\infty} e^{-(23+j\omega )t} dt\,</math>
  
<math>\left. \frac{e^{-15}}{-(j\omega +5)}e^{-(j\omega +5)t}\right]_{1}^{+\infty}</math>
+
<math>\,\mathcal{X}(\omega)={\left. \frac{e^{-(7+j\omega )t}}{-(7+j\omega )}\right]_{-1}^{\infty}} + {\left. \frac{e^{-(23+j\omega )t}}{-(23+j\omega )}\right]_{1}^{\infty}}\,</math>
 +
 
 +
<math>\,\mathcal{X}(\omega)=\frac{-e^{7+j\omega}}{-(7+j\omega )} - \frac{-e^{-(23+j\omega)}}{-(23+j\omega )} \,</math>
 +
 
 +
<math>\,\mathcal{X}(\omega)=\frac{e^{7+j\omega}}{7+j\omega} - \frac{e^{-(23+j\omega)}}{23+j\omega} \,</math>
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:26, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Compute the fourier transform of this signal below:

$ \,x(t)=e^{-7t}u(t+1) + e^{23t}u(t-1)\, $


$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty} e^{-7t} u(t+1) e^{-j\omega t} dt + \int_{-\infty}^{\infty} e^{-23t} u(t-1) e^{-j\omega t}dt\, $

$ \,\mathcal{X}(\omega)=\int_{-1}^{\infty} e^{-(7+j\omega )t} dt + \int_{1}^{\infty} e^{-(23+j\omega )t} dt\, $

$ \,\mathcal{X}(\omega)={\left. \frac{e^{-(7+j\omega )t}}{-(7+j\omega )}\right]_{-1}^{\infty}} + {\left. \frac{e^{-(23+j\omega )t}}{-(23+j\omega )}\right]_{1}^{\infty}}\, $

$ \,\mathcal{X}(\omega)=\frac{-e^{7+j\omega}}{-(7+j\omega )} - \frac{-e^{-(23+j\omega)}}{-(23+j\omega )} \, $

$ \,\mathcal{X}(\omega)=\frac{e^{7+j\omega}}{7+j\omega} - \frac{e^{-(23+j\omega)}}{23+j\omega} \, $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett