(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
Compute the Fourier transform of the following CT signal using the integral formula:
 
Compute the Fourier transform of the following CT signal using the integral formula:
  
 
<math>\,x(t)=e^{-5(t+3)}u(t-1) + e^{-j\pi t}\delta(t-\frac{\pi}{2})\,</math>
 
<math>\,x(t)=e^{-5(t+3)}u(t-1) + e^{-j\pi t}\delta(t-\frac{\pi}{2})\,</math>
 
  
  
Line 14: Line 22:
  
 
<math>\,\mathcal{X}(\omega)=e^{-15}\int_{1}^{+\infty}e^{-(j\omega +5)t}\,dt + e^{-j(\omega +\pi)\frac{\pi}{2}}\,</math>
 
<math>\,\mathcal{X}(\omega)=e^{-15}\int_{1}^{+\infty}e^{-(j\omega +5)t}\,dt + e^{-j(\omega +\pi)\frac{\pi}{2}}\,</math>
 +
 +
<math>\,\mathcal{X}(\omega)=\left. \frac{e^{-15}}{-(j\omega +5)}e^{-(j\omega +5)t}\right]_{1}^{+\infty} + e^{-j(\omega +\pi)\frac{\pi}{2}}\,</math>
 +
 +
<math>\,\mathcal{X}(\omega)=\frac{e^{-15}}{-(j\omega +5)}(e^{-j\omega(\infty)}e^{-5(\infty)}-e^{-(j\omega +5)}) + e^{-j(\omega +\pi)\frac{\pi}{2}}\,</math>
 +
 +
<math>\,\mathcal{X}(\omega)=\frac{e^{-15}}{(j\omega +5)}e^{-(j\omega +5)} + e^{-j(\omega +\pi)\frac{\pi}{2}}\,</math>
 +
 +
<math>\,\mathcal{X}(\omega)=\frac{1}{(j\omega +5)}e^{-(j\omega +20)} + e^{-j(\omega +\pi)\frac{\pi}{2}}\,</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:25, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Compute the Fourier transform of the following CT signal using the integral formula:

$ \,x(t)=e^{-5(t+3)}u(t-1) + e^{-j\pi t}\delta(t-\frac{\pi}{2})\, $


Answer

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}e^{-5(t+3)}u(t-1)e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}e^{-j\pi t}\delta(t-\frac{\pi}{2})e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=\int_{1}^{+\infty}e^{-5t}e^{-15}e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}\delta(t-\frac{\pi}{2})e^{-j(\omega +\pi)t}\,dt\, $

$ \,\mathcal{X}(\omega)=e^{-15}\int_{1}^{+\infty}e^{-(j\omega +5)t}\,dt + e^{-j(\omega +\pi)\frac{\pi}{2}}\, $

$ \,\mathcal{X}(\omega)=\left. \frac{e^{-15}}{-(j\omega +5)}e^{-(j\omega +5)t}\right]_{1}^{+\infty} + e^{-j(\omega +\pi)\frac{\pi}{2}}\, $

$ \,\mathcal{X}(\omega)=\frac{e^{-15}}{-(j\omega +5)}(e^{-j\omega(\infty)}e^{-5(\infty)}-e^{-(j\omega +5)}) + e^{-j(\omega +\pi)\frac{\pi}{2}}\, $

$ \,\mathcal{X}(\omega)=\frac{e^{-15}}{(j\omega +5)}e^{-(j\omega +5)} + e^{-j(\omega +\pi)\frac{\pi}{2}}\, $

$ \,\mathcal{X}(\omega)=\frac{1}{(j\omega +5)}e^{-(j\omega +20)} + e^{-j(\omega +\pi)\frac{\pi}{2}}\, $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009