Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
Specify a signal x(t) and compute its Fourier transform using the integral formula.( Make a hard one)
 
Specify a signal x(t) and compute its Fourier transform using the integral formula.( Make a hard one)
  
Line 14: Line 22:
  
 
<math>\,\mathcal{X}(\omega)= \frac{e^{-jw}}{2+jw} \,</math>
 
<math>\,\mathcal{X}(\omega)= \frac{e^{-jw}}{2+jw} \,</math>
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:24, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Specify a signal x(t) and compute its Fourier transform using the integral formula.( Make a hard one)

$ e^{-2(t-1)}u(t-1)\, $

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)= \int_{1}^{ \infty} e^{2-t(2+jw)}dt\, $

integrating and putting in limits

$ \,\mathcal{X}(\omega)= \frac{e^{2-(2+jw)}}{2+jw} \, $

$ \,\mathcal{X}(\omega)= \frac{e^{2-2-jw}}{2+jw} \, $

$ \,\mathcal{X}(\omega)= \frac{e^{-jw}}{2+jw} \, $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach