(Periodic CT Signal)
 
(18 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 
==Periodic CT Signal==
 
==Periodic CT Signal==
  
<math>x(t) = cos(3\pi\ t+\pi\) \!</math>
+
<math>x(t) = cos(3\pi t+\pi) \!</math> with fundamental frequency of <math>\pi</math>
  
==Rewritten in <math>e^{jw_0}</math> Form==
 
<math>x(t) =pi  \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t})</math>
 
  
==Fourier Series Coefficients==
+
<math>x(t) = \frac{e^{j(3\pi t+\pi)}+e^{-j(3\pi t+\pi)}}{2}</math>
<math>a_0 = \frac{4\pi}{3}</math>
+
  
<math>a_1 = \frac{1}{1000}</math>
+
<math>     = \frac{e^{j3\pi t}e^{\pi}+e^{-j3\pi t}e^{\pi}}{2}</math>
 +
 
 +
<math>    = \frac{-e^{j3\pi t}-e^{-j3\pi t}}{2}</math>
 +
 
 +
<math>    = -\frac{1}{2}e^{j3\pi t}-\frac{1}{2}e^{-j3\pi t}</math>
 +
 
 +
 
 +
==Fourier Series Coefficients==
 +
<math>a_3 = -\frac{1}{2}</math>
  
<math>w_0 = 1000\pi\ </math>
+
<math>a_{-3} = -\frac{1}{2}</math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:08, 16 September 2013


Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Periodic CT Signal

$ x(t) = cos(3\pi t+\pi) \! $ with fundamental frequency of $ \pi $


$ x(t) = \frac{e^{j(3\pi t+\pi)}+e^{-j(3\pi t+\pi)}}{2} $

$ = \frac{e^{j3\pi t}e^{\pi}+e^{-j3\pi t}e^{\pi}}{2} $

$ = \frac{-e^{j3\pi t}-e^{-j3\pi t}}{2} $

$ = -\frac{1}{2}e^{j3\pi t}-\frac{1}{2}e^{-j3\pi t} $


Fourier Series Coefficients

$ a_3 = -\frac{1}{2} $

$ a_{-3} = -\frac{1}{2} $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn