(One intermediate revision by one other user not shown)
Line 1: Line 1:
CT signal:
+
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
 
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
For the CT signal:
  
 
<math>x(t) = 2\sin(2 \pi t) - (1 + 3j)\cos(5 \pi t)\,</math>
 
<math>x(t) = 2\sin(2 \pi t) - (1 + 3j)\cos(5 \pi t)\,</math>
Line 32: Line 41:
  
 
For K \neq [2,-2,-5,5], <math>a_k\, = 0</math>
 
For K \neq [2,-2,-5,5], <math>a_k\, = 0</math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:04, 16 September 2013


Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


For the CT signal:

$ x(t) = 2\sin(2 \pi t) - (1 + 3j)\cos(5 \pi t)\, $


$ x(t) = 2 * \frac{e^{j2\pi t} - e^{-j2\pi t}}{2j} - (1 + 3j)*\frac{e^{j5\pi t} + e^{-j5\pi t}}{2}\, $


$ x(t) = \frac{1}{j}e^{j2\pi t} - \frac{1}{j}e^{-j2\pi t} - \frac{1+3j}{2}e^{j5\pi t} - \frac{1+3j}{2}e^{j5\pi t}\, $


$ x(t) = \frac{1}{j}e^{2*j\pi t} - \frac{1}{j}e^{-2*j\pi t} - \frac{1+3j}{2}e^{5*j\pi t} - \frac{1+3j}{2}e^{-5*j\pi t}\, $


$ \omega_0\, $ = $ \pi\, $ therefore k = 2,-2,5,-5

Applying the coefficients to get the $ a_k\, $


$ a_5 = \frac{-1-3j}{2}\, $ $ a_{-5} = \frac{-1-3j}{2}\, $


$ a_2 = \frac{1}{j}\, $ $ a_{-2} = \frac{-1}{j}\, $


For K \neq [2,-2,-5,5], $ a_k\, = 0 $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva