(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier series]] | ||
+ | [[Category:signals and systems]] | ||
+ | |||
+ | == Example of Computation of Fourier series of a CT SIGNAL == | ||
+ | A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]] | ||
+ | ---- | ||
== Equations == | == Equations == | ||
Line 13: | Line 22: | ||
==Input Signal== | ==Input Signal== | ||
− | <math>x(t)=( | + | <math>x(t)=cos(3*pi*t)cos(6*pi*t)\!</math> |
− | + | <br> | |
− | <math> | + | <br> |
− | + | <math>x(t)=[1/2*e^{j*2*pi*t}+1/2*e^{-j*2*pi*t}]*[1/2*e^{j*4*pi*t}+1/2*e^{-j*4*pi*t}]</math> | |
− | <math> | + | <br> |
− | + | <math> =1/4*e^{j6pit}+1/4*e^{-j2pit}+1/4*e^{j2pit}+1/4*e^{-j6pit}</math> | |
− | + | <br> | |
− | + | <br> | |
− | < | + | The fundamental frequency is 2*pi |
− | == | + | <br> |
− | + | a3=1/4 | |
+ | a-1=1/4 | ||
+ | a1=1/4 | ||
+ | a3=1/4 | ||
+ | all other ak=0 | ||
+ | |||
+ | ---- | ||
+ | [[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]] |
Latest revision as of 10:02, 16 September 2013
Example of Computation of Fourier series of a CT SIGNAL
A practice problem on "Signals and Systems"
Equations
Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $
From Phil Cannon
Input Signal
$ x(t)=cos(3*pi*t)cos(6*pi*t)\! $
$ x(t)=[1/2*e^{j*2*pi*t}+1/2*e^{-j*2*pi*t}]*[1/2*e^{j*4*pi*t}+1/2*e^{-j*4*pi*t}] $
$ =1/4*e^{j6pit}+1/4*e^{-j2pit}+1/4*e^{j2pit}+1/4*e^{-j6pit} $
The fundamental frequency is 2*pi
a3=1/4
a-1=1/4
a1=1/4
a3=1/4
all other ak=0