(New page: == Equations == Fourier series of x(t): <br> <math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math> Signal Coefficients: <br> <math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</...) |
|||
(10 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier series]] | ||
+ | [[Category:signals and systems]] | ||
+ | |||
+ | == Example of Computation of Fourier series of a CT SIGNAL == | ||
+ | A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]] | ||
+ | ---- | ||
== Equations == | == Equations == | ||
Line 9: | Line 18: | ||
<math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math> | <math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math> | ||
− | + | From Phil Cannon | |
+ | |||
+ | ==Input Signal== | ||
+ | |||
+ | <math>x(t)=cos(3*pi*t)cos(6*pi*t)\!</math> | ||
+ | <br> | ||
+ | <br> | ||
+ | <math>x(t)=[1/2*e^{j*2*pi*t}+1/2*e^{-j*2*pi*t}]*[1/2*e^{j*4*pi*t}+1/2*e^{-j*4*pi*t}]</math> | ||
+ | <br> | ||
+ | <math> =1/4*e^{j6pit}+1/4*e^{-j2pit}+1/4*e^{j2pit}+1/4*e^{-j6pit}</math> | ||
+ | <br> | ||
+ | <br> | ||
+ | The fundamental frequency is 2*pi | ||
+ | <br> | ||
+ | a3=1/4 | ||
+ | a-1=1/4 | ||
+ | a1=1/4 | ||
+ | a3=1/4 | ||
+ | all other ak=0 | ||
+ | |||
+ | ---- | ||
+ | [[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]] |
Latest revision as of 10:02, 16 September 2013
Example of Computation of Fourier series of a CT SIGNAL
A practice problem on "Signals and Systems"
Equations
Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $
From Phil Cannon
Input Signal
$ x(t)=cos(3*pi*t)cos(6*pi*t)\! $
$ x(t)=[1/2*e^{j*2*pi*t}+1/2*e^{-j*2*pi*t}]*[1/2*e^{j*4*pi*t}+1/2*e^{-j*4*pi*t}] $
$ =1/4*e^{j6pit}+1/4*e^{-j2pit}+1/4*e^{j2pit}+1/4*e^{-j6pit} $
The fundamental frequency is 2*pi
a3=1/4
a-1=1/4
a1=1/4
a3=1/4
all other ak=0