(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
<math>\ x(t) = \sin(4\pi t) + \sin(6\pi t)</math>
+
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
 
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
<math>\ x(t) = \sin(4\pi t) \sin(6\pi t)</math>
  
  
Line 8: Line 17:
  
  
<math>\ x(t) = \frac{-1}{4}(e^{5(j2\pi t)} - e^{-1(j2\pi t)} - e^{1(j2\pi t)} + e^{-5(j2\pi t)}</math>
+
<math>\ x(t) = \frac{-1}{4}(e^{5(j2\pi t)} - e^{-1(j2\pi t)} - e^{1(j2\pi t)} + e^{-5(j2\pi t)})</math>
  
  
Line 15: Line 24:
  
 
All other values <math>\ a_{n} = 0</math>
 
All other values <math>\ a_{n} = 0</math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:01, 16 September 2013


Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


$ \ x(t) = \sin(4\pi t) \sin(6\pi t) $


$ \ x(t) = (\frac{e^{j4\pi t} - e^{-j4\pi t}}{2}) (\frac{e^{j6\pi t} - e^{-j6\pi t}}{2j}) $


$ \ x(t) = \frac{-1}{4}(e^{j10\pi t} - e{-j2\pi t} - e^{j2\pi t} + e^{-j10\pi t}) $


$ \ x(t) = \frac{-1}{4}(e^{5(j2\pi t)} - e^{-1(j2\pi t)} - e^{1(j2\pi t)} + e^{-5(j2\pi t)}) $


$ a_{5} = \frac{-1}{4}, a_{-1} = \frac{1}{4}, a_{1} = \frac{1}{4}, a_{-5} = \frac{-1}{4} $


All other values $ \ a_{n} = 0 $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett