(New page: For a CT signal x(t) <math>= \sum_{k=-\infty}^\infty a_k e^{jk\omega t} </math> Where x(t) <math>= 3 + 2cos(4\pi t) = 3 + (e^{j4\pi t} + e^{-j4\pi t} )</math> <math>\omega = 4\pi</mat...)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
For a CT signal
 
For a CT signal
  
Line 20: Line 30:
  
 
<math>a_{-4} = 1</math>
 
<math>a_{-4} = 1</math>
 +
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:01, 16 September 2013


Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


For a CT signal

x(t) $ = \sum_{k=-\infty}^\infty a_k e^{jk\omega t} $

Where

x(t) $ = 3 + 2cos(4\pi t) = 3 + (e^{j4\pi t} + e^{-j4\pi t} ) $

$ \omega = 4\pi $

A signal $ e^{jk\omega t} $ is periodic if and only if $ \left (\frac{\omega}{2\pi} \right) $ is a rational number

 $ \left ( \frac{4\pi}{2\pi} \right ) =   \left ( \frac{2}{1} \right ) $

2 is a rational number!

$ a_o = 3 $

$ a_4 = 1 $

$ a_{-4} = 1 $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett