(CT Signal)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Preview ==
+
[[Category:problem solving]]
    This is only a preview; changes have not yet been saved! (????)
+
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
  
 
== CT Signal ==
 
== CT Signal ==
:<math> x(t) = 1 + sin(w_0 t) + 3cos(w_0 t + {\pi \over 4})  </math><br><br>
+
:<math> x(t) = 1 + sin(w_0 t) + 3cos(2w_0 t + {\pi \over 4})  </math><br><br>
 
This is a signal with period <math>T = {2\pi \over w_0}</math><br><br>
 
This is a signal with period <math>T = {2\pi \over w_0}</math><br><br>
:<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t} - e^{-j w_0 t}] + {3 \over 2}[e^{(j w_0 t + {\pi \over 4})}+e^{-(j w_0 t + {\pi \over 4})}]</math><br><br>
+
:<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t} - e^{-j w_0 t}] + {3 \over 2}[e^{(j 2w_0 t + {\pi \over 4})}+e^{-(j 2w_0 t + {\pi \over 4})}]</math><br><br>
:<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j w_0 t} e^{-j{\pi \over 4}}]</math><br><br>
+
:<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j 2w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j 2w_0 t} e^{-j{\pi \over 4}}]</math><br><br>
 +
:<math>e^{j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} </math><br>
 +
:<math>e^{-j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} </math>
 +
<br><br>
 +
:<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j 2w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j 2w_0 t} e^{-j{\pi \over 4}}]</math><br><br>
 +
:<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) [e^{j 2w_0 t}]+ {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) [e^{-j 2w_0 t}]</math><br><br>
 +
<br>
 +
Thus, the Fourier series coefficients for this are:<br><br>
 +
<math> a_0 = 1 </math><br><br><math> a_1 = {1 \over 2j}</math><br><br><math> a_{-1} = {-1 \over 2j}</math><br><br><math> a_2 = {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}})</math><br><br><math> a_{-2} = {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) </math><br><br><math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 09:57, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


CT Signal

$ x(t) = 1 + sin(w_0 t) + 3cos(2w_0 t + {\pi \over 4}) $

This is a signal with period $ T = {2\pi \over w_0} $

$ x(t) = 1 + {1 \over 2j}[e^{j w_0 t} - e^{-j w_0 t}] + {3 \over 2}[e^{(j 2w_0 t + {\pi \over 4})}+e^{-(j 2w_0 t + {\pi \over 4})}] $

$ x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j 2w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j 2w_0 t} e^{-j{\pi \over 4}}] $

$ e^{j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} $
$ e^{-j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} $



$ x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j 2w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j 2w_0 t} e^{-j{\pi \over 4}}] $

$ x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) [e^{j 2w_0 t}]+ {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) [e^{-j 2w_0 t}] $


Thus, the Fourier series coefficients for this are:

$ a_0 = 1 $

$ a_1 = {1 \over 2j} $

$ a_{-1} = {-1 \over 2j} $

$ a_2 = {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) $

$ a_{-2} = {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) $

$ ---- [[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]] $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood