(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
== The Formulas for Fourier Series ==
 
== The Formulas for Fourier Series ==
 
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math>
 
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math>
Line 30: Line 39:
 
<math>a_3 = a_{-3} = \frac{5+3j}{2}</math>
 
<math>a_3 = a_{-3} = \frac{5+3j}{2}</math>
  
And <math>a_3 = a_{-4} = (1-\frac{1}{2})</math>
+
And <math>a_4 = a_{-4} = (1-\frac{j}{2})</math>
  
 
And <math>a_k = 0</math> else
 
And <math>a_k = 0</math> else
 
+
----
 
Go back to [[Homework 4_ECE301Fall2008mboutin]]
 
Go back to [[Homework 4_ECE301Fall2008mboutin]]
 +
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 09:57, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


The Formulas for Fourier Series

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

where $ a_k=\frac{1}{T} \int_0^Tx(t)e^{-jk\omega_ot}dt $

Chosen Formula

$ x(t) = (5+3j)cos(4t) + (1+2j)sin(3t) $

Computation

First we want to compute the period (T) for this function. The period of sin and cos is $ 2\pi $, therefore the combined period is also $ 2\pi $.

Next we compute the coefficients. Since we are using sin and cos, we can use their equivalent formulas.

$ x(t) = (5+3j)cos(4t) + (1+2j)sin(3t) $


$ = (5+3j)(\frac{e^{4jt} +e^{-4jt}}{2}) + (1+2j)(\frac{e^{j3t} - e^{-j3t}}{2j}) $

$ = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + \frac{1+2j}{2j}e^{j3t} - \frac{1+2j}{2j}e^{-3jt} $

multiplying by complex conjugate we get:

$ = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + (1-\frac{j}{2})e^{j3t} - (1-\frac{j}{2})e^{-j3t} $

since $ \omega_0=\frac{2\pi}{T} $ and $ T=2\pi $ then $ \omega_0=1 $

Therefore for the first term k=4 and for the second term k=-4. Likewise, for the third and fourth terms k=3 and k=-3 respectively. Therefore our coefficients are:

$ a_3 = a_{-3} = \frac{5+3j}{2} $

And $ a_4 = a_{-4} = (1-\frac{j}{2}) $

And $ a_k = 0 $ else


Go back to Homework 4_ECE301Fall2008mboutin

Back to Practice Problems on Signals and Systems

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang