(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
== The Formulas for Fourier Series ==
 
== The Formulas for Fourier Series ==
 
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math>
 
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math>
Line 9: Line 18:
  
 
== Computation ==
 
== Computation ==
First we want to compute the period (T) for this function.  The period of sin and cos is 2pi, therefore the combined period is also 2pi.
+
First we want to compute the period (T) for this function.  The period of sin and cos is <math>2\pi</math>, therefore the combined period is also <math>2\pi</math>.
  
 
Next we compute the coefficients.  Since we are using sin and cos, we can use their equivalent formulas.
 
Next we compute the coefficients.  Since we are using sin and cos, we can use their equivalent formulas.
  
 
<math>x(t) = (5+3j)cos(4t) + (1+2j)sin(3t)</math>
 
<math>x(t) = (5+3j)cos(4t) + (1+2j)sin(3t)</math>
<math> = (5+3j)(\frac{e^{4jt} +e^{-4jt}}{2}) + (1+2j)(\frac{e^{j3t} + e^{-j3t}}{2j})</math>
+
 
 +
 
 +
<math> = (5+3j)(\frac{e^{4jt} +e^{-4jt}}{2}) + (1+2j)(\frac{e^{j3t} - e^{-j3t}}{2j})</math>
 +
 
 +
<math> = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + \frac{1+2j}{2j}e^{j3t} - \frac{1+2j}{2j}e^{-3jt}</math>
 +
 
 +
multiplying by complex conjugate we get:
 +
 
 +
<math> = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + (1-\frac{j}{2})e^{j3t} - (1-\frac{j}{2})e^{-j3t}</math>
 +
 
 +
since <math>\omega_0=\frac{2\pi}{T}</math> and <math>T=2\pi</math> then <math>\omega_0=1</math>
 +
 
 +
Therefore for the first term k=4 and for the second term k=-4.  Likewise, for the third and fourth terms k=3 and k=-3 respectively.  Therefore our coefficients are:
 +
 
 +
<math>a_3 = a_{-3} = \frac{5+3j}{2}</math>
 +
 
 +
And <math>a_4 = a_{-4} = (1-\frac{j}{2})</math>
 +
 
 +
And <math>a_k = 0</math> else
 +
----
 +
Go back to [[Homework 4_ECE301Fall2008mboutin]]
 +
 
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 09:57, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


The Formulas for Fourier Series

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

where $ a_k=\frac{1}{T} \int_0^Tx(t)e^{-jk\omega_ot}dt $

Chosen Formula

$ x(t) = (5+3j)cos(4t) + (1+2j)sin(3t) $

Computation

First we want to compute the period (T) for this function. The period of sin and cos is $ 2\pi $, therefore the combined period is also $ 2\pi $.

Next we compute the coefficients. Since we are using sin and cos, we can use their equivalent formulas.

$ x(t) = (5+3j)cos(4t) + (1+2j)sin(3t) $


$ = (5+3j)(\frac{e^{4jt} +e^{-4jt}}{2}) + (1+2j)(\frac{e^{j3t} - e^{-j3t}}{2j}) $

$ = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + \frac{1+2j}{2j}e^{j3t} - \frac{1+2j}{2j}e^{-3jt} $

multiplying by complex conjugate we get:

$ = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + (1-\frac{j}{2})e^{j3t} - (1-\frac{j}{2})e^{-j3t} $

since $ \omega_0=\frac{2\pi}{T} $ and $ T=2\pi $ then $ \omega_0=1 $

Therefore for the first term k=4 and for the second term k=-4. Likewise, for the third and fourth terms k=3 and k=-3 respectively. Therefore our coefficients are:

$ a_3 = a_{-3} = \frac{5+3j}{2} $

And $ a_4 = a_{-4} = (1-\frac{j}{2}) $

And $ a_k = 0 $ else


Go back to Homework 4_ECE301Fall2008mboutin

Back to Practice Problems on Signals and Systems

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010