(Example)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
==Definition of Periodic CT Signal==
 
==Definition of Periodic CT Signal==
  
Line 15: Line 24:
 
<math>=\frac{3}{2}(e^{j3t})+\frac{3}{2}(e^{-j3t})</math>
 
<math>=\frac{3}{2}(e^{j3t})+\frac{3}{2}(e^{-j3t})</math>
  
so we can see that when k=1, <math>a_1=\frac{3}{2}</math>, and when k=-1,<math>a_-1=\frac{3}{2}</math>
+
so we can see that when k=1, <math>a_1=\frac{3}{2}</math>, and when k=-1,<math>a_{-1}=\frac{3}{2}</math>
  
 
others are all zero
 
others are all zero
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 09:53, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Definition of Periodic CT Signal

x(t) is periodic if there existes T>0 such that x(t)=x(T+t)

Example

Let's look at: $ x(t)=3*cos(3t) $, we know that the fudamental period of x(t) is

$ w_0=2\pi/T=3 $

$ x(t)=3cos(3t) $

$ =\frac{3}{2}[(e^{j3t})+(e^{-j3t})] $

$ =\frac{3}{2}(e^{j3t})+\frac{3}{2}(e^{-j3t}) $

so we can see that when k=1, $ a_1=\frac{3}{2} $, and when k=-1,$ a_{-1}=\frac{3}{2} $

others are all zero


Back to Practice Problems on Signals and Systems

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang