(10 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier series]] | ||
+ | [[Category:signals and systems]] | ||
+ | |||
+ | == Example of Computation of Fourier series of a CT SIGNAL == | ||
+ | A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]] | ||
+ | ---- | ||
Given the periodic CT signal | Given the periodic CT signal | ||
Line 7: | Line 16: | ||
== Answer == | == Answer == | ||
− | We can rewrite the signal <math>x(t)</math> as | + | We can rewrite the signal <math>\,x(t)\,</math> as |
+ | |||
+ | <math>\,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\,</math> | ||
+ | |||
+ | <math>\,x(t)=\frac{3\pi}{8j}(e^{j\frac{3\pi}{2}t}e^{j\pi}+e^{-j\frac{3\pi}{2}t}e^{-j\pi})(e^{j\frac{3\pi}{4}t}e^{j\frac{\pi}{2}}-e^{-j\frac{3\pi}{4}t}e^{-j\frac{\pi}{2}})\,</math> | ||
+ | |||
+ | <math>\,x(t)=\frac{3\pi}{8j}(-e^{j\frac{3\pi}{2}t}-e^{-j\frac{3\pi}{2}t})(je^{j\frac{3\pi}{4}t}+je^{-j\frac{3\pi}{4}t})\,</math> | ||
+ | |||
+ | <math>\,x(t)=\frac{-3\pi}{8}(e^{j\frac{3\pi}{2}t}+e^{-j\frac{3\pi}{2}t})(e^{j\frac{3\pi}{4}t}+e^{-j\frac{3\pi}{4}t})\,</math> | ||
+ | |||
+ | <math>\,x(t)=-\frac{3\pi}{8}(e^{j(\frac{3\pi}{2}+\frac{3\pi}{4})t}+e^{j(\frac{3\pi}{2}-\frac{3\pi}{4})t}+e^{j(-\frac{3\pi}{2}+\frac{3\pi}{4})t}+e^{j(-\frac{3\pi}{2}-\frac{3\pi}{4})t})\,</math> | ||
+ | |||
+ | <math>\,x(t)=-\frac{3\pi}{8}(e^{j\frac{9\pi}{4}t}+e^{j\frac{3\pi}{4}t}+e^{-j\frac{3\pi}{4}t}+e^{-j\frac{9\pi}{4}t})\,</math> | ||
+ | |||
+ | <math>\,x(t)=-\frac{3\pi}{8}e^{j3\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{j\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{-j\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{-j3\frac{3\pi}{4}t}\,</math> | ||
+ | |||
+ | |||
+ | This form of <math>\,x(t)\,</math> is in the format of a Fourier series, so we can directly get the fundamental frequency <math>\,\omega_o\,</math> and the coefficients <math>\,a_k\,</math>. Therefore, the answer is: | ||
+ | |||
+ | <math>\,\omega_o=\frac{3\pi}{4}\,</math> | ||
+ | |||
+ | and the coefficients are | ||
+ | |||
+ | <math>\,a_{-3}=-\frac{3\pi}{8}\,</math> | ||
+ | |||
+ | <math>\,a_{-1}=-\frac{3\pi}{8}\,</math> | ||
+ | |||
+ | <math>\,a_1=-\frac{3\pi}{8}\,</math> | ||
+ | |||
+ | <math>\,a_3=-\frac{3\pi}{8}\,</math> | ||
− | <math>\, | + | <math>\,a_k=0\,</math> for all other <math>\,k\in\mathbb{Z}\,</math> |
+ | ---- | ||
+ | [[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]] |
Latest revision as of 09:53, 16 September 2013
Example of Computation of Fourier series of a CT SIGNAL
A practice problem on "Signals and Systems"
Given the periodic CT signal
$ \,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\, $
compute its Fourier series coefficients.
Answer
We can rewrite the signal $ \,x(t)\, $ as
$ \,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\, $
$ \,x(t)=\frac{3\pi}{8j}(e^{j\frac{3\pi}{2}t}e^{j\pi}+e^{-j\frac{3\pi}{2}t}e^{-j\pi})(e^{j\frac{3\pi}{4}t}e^{j\frac{\pi}{2}}-e^{-j\frac{3\pi}{4}t}e^{-j\frac{\pi}{2}})\, $
$ \,x(t)=\frac{3\pi}{8j}(-e^{j\frac{3\pi}{2}t}-e^{-j\frac{3\pi}{2}t})(je^{j\frac{3\pi}{4}t}+je^{-j\frac{3\pi}{4}t})\, $
$ \,x(t)=\frac{-3\pi}{8}(e^{j\frac{3\pi}{2}t}+e^{-j\frac{3\pi}{2}t})(e^{j\frac{3\pi}{4}t}+e^{-j\frac{3\pi}{4}t})\, $
$ \,x(t)=-\frac{3\pi}{8}(e^{j(\frac{3\pi}{2}+\frac{3\pi}{4})t}+e^{j(\frac{3\pi}{2}-\frac{3\pi}{4})t}+e^{j(-\frac{3\pi}{2}+\frac{3\pi}{4})t}+e^{j(-\frac{3\pi}{2}-\frac{3\pi}{4})t})\, $
$ \,x(t)=-\frac{3\pi}{8}(e^{j\frac{9\pi}{4}t}+e^{j\frac{3\pi}{4}t}+e^{-j\frac{3\pi}{4}t}+e^{-j\frac{9\pi}{4}t})\, $
$ \,x(t)=-\frac{3\pi}{8}e^{j3\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{j\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{-j\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{-j3\frac{3\pi}{4}t}\, $
This form of $ \,x(t)\, $ is in the format of a Fourier series, so we can directly get the fundamental frequency $ \,\omega_o\, $ and the coefficients $ \,a_k\, $. Therefore, the answer is:
$ \,\omega_o=\frac{3\pi}{4}\, $
and the coefficients are
$ \,a_{-3}=-\frac{3\pi}{8}\, $
$ \,a_{-1}=-\frac{3\pi}{8}\, $
$ \,a_1=-\frac{3\pi}{8}\, $
$ \,a_3=-\frac{3\pi}{8}\, $
$ \,a_k=0\, $ for all other $ \,k\in\mathbb{Z}\, $