(New page: <--Insert answer here)
 
 
(11 intermediate revisions by one other user not shown)
Line 1: Line 1:
<--Insert answer here
+
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
 
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
Given the periodic CT signal
 +
 
 +
<math>\,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\,</math>
 +
 
 +
compute its Fourier series coefficients.
 +
 
 +
== Answer ==
 +
 
 +
We can rewrite the signal <math>\,x(t)\,</math> as
 +
 
 +
<math>\,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\,</math>
 +
 
 +
<math>\,x(t)=\frac{3\pi}{8j}(e^{j\frac{3\pi}{2}t}e^{j\pi}+e^{-j\frac{3\pi}{2}t}e^{-j\pi})(e^{j\frac{3\pi}{4}t}e^{j\frac{\pi}{2}}-e^{-j\frac{3\pi}{4}t}e^{-j\frac{\pi}{2}})\,</math>
 +
 
 +
<math>\,x(t)=\frac{3\pi}{8j}(-e^{j\frac{3\pi}{2}t}-e^{-j\frac{3\pi}{2}t})(je^{j\frac{3\pi}{4}t}+je^{-j\frac{3\pi}{4}t})\,</math>
 +
 
 +
<math>\,x(t)=\frac{-3\pi}{8}(e^{j\frac{3\pi}{2}t}+e^{-j\frac{3\pi}{2}t})(e^{j\frac{3\pi}{4}t}+e^{-j\frac{3\pi}{4}t})\,</math>
 +
 
 +
<math>\,x(t)=-\frac{3\pi}{8}(e^{j(\frac{3\pi}{2}+\frac{3\pi}{4})t}+e^{j(\frac{3\pi}{2}-\frac{3\pi}{4})t}+e^{j(-\frac{3\pi}{2}+\frac{3\pi}{4})t}+e^{j(-\frac{3\pi}{2}-\frac{3\pi}{4})t})\,</math>
 +
 
 +
<math>\,x(t)=-\frac{3\pi}{8}(e^{j\frac{9\pi}{4}t}+e^{j\frac{3\pi}{4}t}+e^{-j\frac{3\pi}{4}t}+e^{-j\frac{9\pi}{4}t})\,</math>
 +
 
 +
<math>\,x(t)=-\frac{3\pi}{8}e^{j3\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{j\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{-j\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{-j3\frac{3\pi}{4}t}\,</math>
 +
 
 +
 
 +
This form of <math>\,x(t)\,</math> is in the format of a Fourier series, so we can directly get the fundamental frequency <math>\,\omega_o\,</math> and the coefficients <math>\,a_k\,</math>.  Therefore, the answer is:
 +
 
 +
<math>\,\omega_o=\frac{3\pi}{4}\,</math>
 +
 
 +
and the coefficients are
 +
 
 +
<math>\,a_{-3}=-\frac{3\pi}{8}\,</math>
 +
 
 +
<math>\,a_{-1}=-\frac{3\pi}{8}\,</math>
 +
 
 +
<math>\,a_1=-\frac{3\pi}{8}\,</math>
 +
 
 +
<math>\,a_3=-\frac{3\pi}{8}\,</math>
 +
 
 +
<math>\,a_k=0\,</math> for all other <math>\,k\in\mathbb{Z}\,</math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 09:53, 16 September 2013


Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Given the periodic CT signal

$ \,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\, $

compute its Fourier series coefficients.

Answer

We can rewrite the signal $ \,x(t)\, $ as

$ \,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\, $

$ \,x(t)=\frac{3\pi}{8j}(e^{j\frac{3\pi}{2}t}e^{j\pi}+e^{-j\frac{3\pi}{2}t}e^{-j\pi})(e^{j\frac{3\pi}{4}t}e^{j\frac{\pi}{2}}-e^{-j\frac{3\pi}{4}t}e^{-j\frac{\pi}{2}})\, $

$ \,x(t)=\frac{3\pi}{8j}(-e^{j\frac{3\pi}{2}t}-e^{-j\frac{3\pi}{2}t})(je^{j\frac{3\pi}{4}t}+je^{-j\frac{3\pi}{4}t})\, $

$ \,x(t)=\frac{-3\pi}{8}(e^{j\frac{3\pi}{2}t}+e^{-j\frac{3\pi}{2}t})(e^{j\frac{3\pi}{4}t}+e^{-j\frac{3\pi}{4}t})\, $

$ \,x(t)=-\frac{3\pi}{8}(e^{j(\frac{3\pi}{2}+\frac{3\pi}{4})t}+e^{j(\frac{3\pi}{2}-\frac{3\pi}{4})t}+e^{j(-\frac{3\pi}{2}+\frac{3\pi}{4})t}+e^{j(-\frac{3\pi}{2}-\frac{3\pi}{4})t})\, $

$ \,x(t)=-\frac{3\pi}{8}(e^{j\frac{9\pi}{4}t}+e^{j\frac{3\pi}{4}t}+e^{-j\frac{3\pi}{4}t}+e^{-j\frac{9\pi}{4}t})\, $

$ \,x(t)=-\frac{3\pi}{8}e^{j3\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{j\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{-j\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{-j3\frac{3\pi}{4}t}\, $


This form of $ \,x(t)\, $ is in the format of a Fourier series, so we can directly get the fundamental frequency $ \,\omega_o\, $ and the coefficients $ \,a_k\, $. Therefore, the answer is:

$ \,\omega_o=\frac{3\pi}{4}\, $

and the coefficients are

$ \,a_{-3}=-\frac{3\pi}{8}\, $

$ \,a_{-1}=-\frac{3\pi}{8}\, $

$ \,a_1=-\frac{3\pi}{8}\, $

$ \,a_3=-\frac{3\pi}{8}\, $

$ \,a_k=0\, $ for all other $ \,k\in\mathbb{Z}\, $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn