(→Solution) |
|||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier series]] | ||
+ | |||
+ | == Example of Computation of Fourier series of a CT SIGNAL == | ||
+ | A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]] | ||
+ | ---- | ||
+ | |||
===Useful Info=== | ===Useful Info=== | ||
Line 18: | Line 27: | ||
:else | :else | ||
:<math> a_k = 0 </math> | :<math> a_k = 0 </math> | ||
+ | ---- | ||
+ | [[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]] |
Revision as of 09:52, 16 September 2013
Example of Computation of Fourier series of a CT SIGNAL
A practice problem on "Signals and Systems"
Useful Info
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.
- Let
- $ x(t) = 2sin(2\pi t) + cos(\pi t). $
Solution
- $ x(t) = 2\frac{e^{2 \pi jt}+e^{-2 \pi jt}}{2j} + \frac{e^{\pi jt}+e^{-\pi jt}}{2} $
- $ x(t) = \frac{1}{j}(e^{2 \pi jt} + e^{-2 \pi jt}) + \frac{1}{2}(e^{\pi jt}+e^{-\pi jt}) $
- $ a_1 = \frac{1}{j} $
- $ a_2 = \frac{1}{2} $
- $ \omega_0 = \frac{2\pi}{T} = \frac{2\pi}{2\pi} = 1 $
- else
- $ a_k = 0 $