(19 intermediate revisions by 5 users not shown)
Line 1: Line 1:
[[Category:ECE438Spring2009mboutin]][[Category:ECE438Spring2009mboutin:CourseNotes:Lecture1]]
+
[[Category:ECE]]
 +
[[Category:ECE438]]
 +
[[Category:signal processing]]
 +
[[Category:ECE438Spring2009mboutin]]
 +
[[Category:lecture notes]]
  
== ECE438 Course Notes January 14, 2009 ==
+
=Lecture Notes for [[ECE438]] Spring 2009, [[user:mboutin|Prof. Boutin]]=
 
+
*[[CourseNotes1_(BoutinSpring2009)|Course Notes Lecture 1 Jan. 14, 2009]]
1)Definitions
+
*[[CourseNotes2_(BoutinSpring2009)|Course Notes Lecture 2 Jan. 16, 2009]]
 
+
*[[CourseNotes3_(BoutinSpring2009)|Course Notes Lecture 3 Jan. 21, 2009]]
ECE438 is about digital signals and systems
+
*[[CourseNotes4_(BoutinSpring2009)|Course Notes Lecture 4 Jan. 23, 2009]]
 
+
*[[CourseNotes6_(BoutinSpring2009)|Course Notes Lecture 6 Jan. 28, 2009]]
2) Digital Signal = a signal that can be represented by a sequence of 0's and 1's.
+
*[[CourseNotes16_(BoutinSpring2009)|Course Notes Lecture 16 Feb. 23, 2009]]
so the signal must be DT X(t) = t, i.e. need x(n), n belongs to Z
+
*[[CourseNotes20_(BoutinSpring2009)|Course Notes Lecture 20 Mar. 11, 2009]]
 
+
*[[CourseNotes30_(BoutinSpring2009)|Course Notes Lecture 30 Apr. 17, 2009]]
Signal values must be discrete
+
----
 
+
[[ECE438_(BoutinFall2009)|Back to ECE438, Spring 2009]]
-<math>x(n) \in {0,1}</math> <-- binary valued signal
+
<br/><math>x(n) \in {0,1,2,...,255}</math> <-- gray scale valued signal
+
 
+
 
+
Another example of digital signal
+
 
+
-the pixels in a bitmap image (grayscale) can have a value of 0,1,2,...,255 for each individual pixel.
+
--If you concatenate all the rows of the image you can convert it to a 1 dimensional signal.
+
i.e. <math>x = (row1,row2,row3)</math>
+
 
+
2D Digital signal = signal that can be represented by an array of 0's and 1's
+
 
+
<u>example</u>: 128x128 gray scale image<br/>
+
<math>p_{ij} \in {0,...,255}</math>
+
 
+
matrix <math>A_{ij} = p_{ij}</math> of size 128x128 <br/>
+
 
+
<strong>Digital Systems</strong> = system that can process a ditital signal.<br/>
+
E.g.
+
<ul>
+
<li>Software (MATLAB,C, ...) </li>
+
<li>Firmware</li>
+
<li>Digital Hardware</li>
+
</ul>
+
 
+
== Advantages of Digital Systems ==
+
<ul>
+
<li>precise,reproducable</li>
+
<li>easier to store data</li>
+
<li>easier to build:
+
  <ul>
+
    <li>just need to represent 2 states instead of a continuous range of values</li>
+
  </ul>
+
</li>
+
</ul>
+
 
+
<strong>Software based digital systems</strong>
+
<ul>
+
<li>easier to build</li>
+
<li>cheap to build</li>
+
<li>adaptable</li>
+
<li>easy to fix/upgrade</li>
+
</ul>
+
 
+
<strong>Hardware-based digital systems</strong>
+
<ul>
+
<li>fast.</li>
+
 
+
</ul>
+
<table border="1px">
+
<tr>
+
<td  width="50%" align="center" valign="top">
+
<strong>Continuous time world</strong>
+
<ul>
+
<li>most natural signals live here</li>
+
<li>things are easy to write, understand, conceptualize</li>
+
 
+
</ul>
+
</td>
+
<td width="50%" align="center" valign="top">
+
<strong>Digital World</strong>
+
<ul>
+
<li>digital media signals live here along with computers, MATLAB, digital circuits</li>
+
</ul>
+
</td>
+
</tr>
+
</table>
+
<p>These world are brought together using sampling & quantization, as well as reconstruction</p>
+
 
+
== Signal Characteristics ==
+
<ul>
+
  <li>Deterministic vs. random
+
    <ul>
+
      <li>x(t) well defined , s.a. <math>x(t) =  e^{j\pi t}</math></li>
+
      <li>x(n) well defined , s.a. <math>x(n) = j^{n}</math> <br/>ex: Lena's image</li>
+
    </ul>
+
  </li>
+
  <li>Random
+
    <ul>
+
      <li>x(t) drawn according to some distribution</li>
+
      <li>example: x(t) white noise<br/>x = rand(10) (almost) random</li>
+
    </ul>
+
  </li>
+
</ul>
+
 
+
<ul>
+
  <li>Periodic vs. non-periodic
+
  <ul><li> if <math>\exists</math> positive T such that x(t+T) = x(t),<math>\forall t</math> then we say that x(t) is periodic with period T</li></ul>
+
  </li>
+
</ul>
+

Latest revision as of 05:37, 16 September 2013


Lecture Notes for ECE438 Spring 2009, Prof. Boutin


Back to ECE438, Spring 2009

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal