(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:random variables]]
 
[[Category:random variables]]
 +
[[Category:probability]]
 +
 +
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 +
January 2001
 +
</center>
 +
----
 +
----
 +
=Part 4=
 +
Let <math class="inline">\mathbf{X}_{t}</math>  be a band-limited white noise strictly stationary random process with bandwidth 10 KHz. It is also known that <math class="inline">\mathbf{X}_{t}</math>  is uniformly distributed between <math class="inline">\pm5</math>  volts. Find:
 +
 +
'''(a) (10 pts)'''
 +
 +
Let <math class="inline">\mathbf{Y}_{t}=\left(\mathbf{X}_{t}\right)^{2}</math> . Find the mean square value of <math class="inline">\mathbf{Y}_{t}</math> .
 +
 +
'''(b) (10 pts)'''
 +
 +
Let <math class="inline">\mathbf{X}_{t}</math>  be the input to a linear shift-invariant system with transfer function:
 +
<br>
 +
<math class="inline">H\left(f\right)=\begin{cases}
 +
\begin{array}{lll}
 +
1    \text{      for }\left|f\right|\leq5\text{ KHz}\\
 +
0.5    \text{  for }5\text{ KHz}\leq\left|f\right|\leq50\text{ KHz}\\
 +
0    \text{      elsewhere. }
 +
\end{array}\end{cases}</math>
 +
<br>
 +
 +
Find the mean and variance of the output.
  
==Question from [[ECE_PhD_QE_CNSIP_Jan_2001_Problem1|ECE QE January 2001]]==
 
Question here
 
 
----
 
----
 
==Share and discuss your solutions below.==
 
==Share and discuss your solutions below.==
 
----
 
----
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])=
+
=Solution 1 =
 
Write it here
 
Write it here
 
----
 
----

Latest revision as of 09:37, 13 September 2013


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

January 2001



Part 4

Let $ \mathbf{X}_{t} $ be a band-limited white noise strictly stationary random process with bandwidth 10 KHz. It is also known that $ \mathbf{X}_{t} $ is uniformly distributed between $ \pm5 $ volts. Find:

(a) (10 pts)

Let $ \mathbf{Y}_{t}=\left(\mathbf{X}_{t}\right)^{2} $ . Find the mean square value of $ \mathbf{Y}_{t} $ .

(b) (10 pts)

Let $ \mathbf{X}_{t} $ be the input to a linear shift-invariant system with transfer function:
$ H\left(f\right)=\begin{cases} \begin{array}{lll} 1 \text{ for }\left|f\right|\leq5\text{ KHz}\\ 0.5 \text{ for }5\text{ KHz}\leq\left|f\right|\leq50\text{ KHz}\\ 0 \text{ elsewhere. } \end{array}\end{cases} $

Find the mean and variance of the output.


Share and discuss your solutions below.


Solution 1

Write it here


Solution 2

Write it here.


Back to QE CS question 1, January 2001

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett