(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:random variables]]
 
[[Category:random variables]]
 +
[[Category:probability]]
  
==Question from [[ECE_PhD_QE_CNSIP_Jan_2001_Problem1|ECE QE January 2001]]==
+
<center>
Question here
+
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 
 +
January 2001
 +
</center>
 +
----
 +
----
 +
=Part 2=
 +
'''(a) (7 pts)'''
 +
 
 +
Let <math class="inline">A</math>  and <math class="inline">B</math>  be statistically independent events in the same probability space. Are <math class="inline">A</math>  and <math class="inline">B^{C}</math>  independent? (You must prove your result).
 +
 
 +
'''(b) (7 pts)'''
 +
 
 +
Can two events be statistically independent and mutually exclusive? (You must derive the conditions on A  and B  for this to be true or not.)
 +
 
 +
''(c) (6 pts)'''
 +
 
 +
State the Axioms of Probability.
 
----
 
----
 
==Share and discuss your solutions below.==
 
==Share and discuss your solutions below.==
 
----
 
----
 
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])=
 
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])=
Write it here
+
'''(a) '''
 +
 
 +
<math class="inline">P\left(A\right)=P\left(A\cap\left(B\cup B^{C}\right)\right)=P\left(\left(A\cap B\right)\cup\left(A\cap B^{C}\right)\right)=P\left(A\cap B\right)+P\left(A\cap B^{C}\right)=P\left(A\right)P\left(B\right)+P\left(A\cap B^{C}\right).</math>
 +
 
 +
<math class="inline">P\left(A\cap B^{C}\right)=P\left(A\right)-P\left(A\right)P\left(B\right)=P\left(A\right)\left(1-P\left(B\right)\right)=P\left(A\right)P\left(B^{C}\right).</math>
 +
 
 +
<math class="inline">\therefore A\text{ and }B^{C}\text{ are independent. }</math>
 +
 
 +
'''(b)'''
 +
 
 +
If <math class="inline">P\left(A\right)=0</math>  or <math class="inline">P\left(B\right)=0</math> , then A  and B  are statistically independent and mutually exclusive. Prove this:
 +
 
 +
Without loss of generality, suppose that <math class="inline">P\left(A\right)=0</math> . <math class="inline">0=P\left(A\right)\geq P\left(A\cap B\right)\geq0\Longrightarrow P\left(A\cap B\right)=0\qquad\therefore\text{mutually excclusive}.</math>
 +
 
 +
<math class="inline">P\left(A\cap B\right)=0=P\left(A\right)P\left(B\right)\qquad\therefore\text{statistically independent.}</math>
 +
 
 +
'''(c) '''
 +
 
 +
'''Axioms of probability'''=
 +
 
 +
• The probability measure <math class="inline">P\left(\cdot\right)</math>  corresponding to <math class="inline">S</math>  and <math class="inline">F\left(S\right)</math>  is the assignment of a real number <math class="inline">P\left(A\right)</math>  to each <math class="inline">A\in F\left(S\right)</math>  satisfying following properties. Axioms of probability:
 +
 
 +
1. <math class="inline">P\left(A\right)\geq0</math> , <math class="inline">\forall A\in F\left(S\right)</math> .
 +
 
 +
2. <math class="inline">P\left(S\right)=1</math> .
 +
 
 +
3. If <math class="inline">A_{1}</math>  and <math class="inline">A_{2}</math>  are disjoint events, then <math class="inline">P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)</math> . If <math class="inline">A_{1},A_{2}\in F\left(S\right)</math>  and <math class="inline">A_{1}\cap A_{2}=\varnothing</math> , then <math class="inline">A_{1}</math>  and <math class="inline">A_{2}</math>  are disjoint events.
 +
 
 +
4. If <math class="inline">A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right)</math>  is a countable collection of disjointed events, then <math class="inline">P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right)</math> .
 +
 
 +
• <math class="inline">P\left(\cdot\right)</math>  is a set function. <math class="inline">P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R}</math> .
 +
 
 +
• If you want to talk about the probability of a single output <math class="inline">\omega_{0}\in S</math> , you do so by considering the single event
 +
 
 
----
 
----
 
==Solution 2==
 
==Solution 2==

Latest revision as of 09:36, 13 September 2013


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

January 2001



Part 2

(a) (7 pts)

Let $ A $ and $ B $ be statistically independent events in the same probability space. Are $ A $ and $ B^{C} $ independent? (You must prove your result).

(b) (7 pts)

Can two events be statistically independent and mutually exclusive? (You must derive the conditions on A and B for this to be true or not.)

(c) (6 pts)'

State the Axioms of Probability.


Share and discuss your solutions below.


Solution 1 (retrived from here)

(a)

$ P\left(A\right)=P\left(A\cap\left(B\cup B^{C}\right)\right)=P\left(\left(A\cap B\right)\cup\left(A\cap B^{C}\right)\right)=P\left(A\cap B\right)+P\left(A\cap B^{C}\right)=P\left(A\right)P\left(B\right)+P\left(A\cap B^{C}\right). $

$ P\left(A\cap B^{C}\right)=P\left(A\right)-P\left(A\right)P\left(B\right)=P\left(A\right)\left(1-P\left(B\right)\right)=P\left(A\right)P\left(B^{C}\right). $

$ \therefore A\text{ and }B^{C}\text{ are independent. } $

(b)

If $ P\left(A\right)=0 $ or $ P\left(B\right)=0 $ , then A and B are statistically independent and mutually exclusive. Prove this:

Without loss of generality, suppose that $ P\left(A\right)=0 $ . $ 0=P\left(A\right)\geq P\left(A\cap B\right)\geq0\Longrightarrow P\left(A\cap B\right)=0\qquad\therefore\text{mutually excclusive}. $

$ P\left(A\cap B\right)=0=P\left(A\right)P\left(B\right)\qquad\therefore\text{statistically independent.} $

(c)

Axioms of probability=

• The probability measure $ P\left(\cdot\right) $ corresponding to $ S $ and $ F\left(S\right) $ is the assignment of a real number $ P\left(A\right) $ to each $ A\in F\left(S\right) $ satisfying following properties. Axioms of probability:

1. $ P\left(A\right)\geq0 $ , $ \forall A\in F\left(S\right) $ .

2. $ P\left(S\right)=1 $ .

3. If $ A_{1} $ and $ A_{2} $ are disjoint events, then $ P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right) $ . If $ A_{1},A_{2}\in F\left(S\right) $ and $ A_{1}\cap A_{2}=\varnothing $ , then $ A_{1} $ and $ A_{2} $ are disjoint events.

4. If $ A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right) $ is a countable collection of disjointed events, then $ P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right) $ .

$ P\left(\cdot\right) $ is a set function. $ P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R} $ .

• If you want to talk about the probability of a single output $ \omega_{0}\in S $ , you do so by considering the single event


Solution 2

Write it here.


Back to QE CS question 1, January 2001

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn