(New page: = ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS) = = Question 5, August 2011, Part 1 = :[[ECE...) |
|||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | [[Category:ECE]] | |
+ | [[Category:QE]] | ||
+ | [[Category:CNSIP]] | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:image processing]] | ||
− | = [[ECE | + | <center> |
+ | <font size= 4> | ||
+ | [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] | ||
+ | </font size> | ||
− | + | <font size= 4> | |
+ | Communication, Networking, Signal and Image Processing (CS) | ||
+ | Question 5: Image Processing | ||
+ | </font size> | ||
+ | |||
+ | August 2011 | ||
+ | </center> | ||
+ | ---- | ||
---- | ---- | ||
+ | ==Question== | ||
+ | '''Part 1. ''' 50 pts | ||
− | |||
− | + | <font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n). | |
+ | </math></span></font> | ||
− | + | <math>\color{blue} | |
+ | y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}. | ||
+ | </math><br> | ||
− | <math> | + | <math>\color{blue} |
+ | \text{For parts a) and b) let} | ||
+ | </math><br> | ||
+ | <math>\color{blue} | ||
+ | h(m,n)=sinc(mT,nT), \text{where} T\leq1. | ||
+ | </math><br> | ||
− | |||
− | |||
− | |||
− | <math> | + | <math>\color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right).</math><br> |
− | + | ||
− | + | ||
− | </math> | + | |
− | <math> | + | <math>\color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2} |
− | + | ||
− | \ | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</math><br> | </math><br> | ||
− | |||
− | < | + | <math>\color{blue} |
− | + | \text{For parts c), d), and e) let} | |
− | </math> | + | </math><br> |
− | </ | + | <math>\color{blue} |
+ | h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right) | ||
+ | </math><br> | ||
+ | <math>\color{blue} | ||
+ | \text{where } T\leq1. | ||
+ | </math><br> | ||
− | |||
− | |||
− | |||
− | + | <math>\color{blue}\text{c) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right).</math><br> | |
− | <math>\color{blue}\text{ | + | <math>\color{blue}\text{d) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2} |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</math><br> | </math><br> | ||
− | <math>\color{blue}\text{ | + | <math>\color{blue}\text{e) Calculate } y(m,n) \text{ when } x(m,n)=1.</math><br> |
− | + | ||
− | + | ||
− | + | ||
− | </math> | + | |
− | + | ||
− | |||
− | |||
− | |||
+ | :'''Click [[ECE-QE_CS5-2011_solusion-1|here]] to view student [[ECE-QE_CS5-2011_solusion-1|answers and discussions]]''' | ||
---- | ---- | ||
+ | '''Part 2.''' 50 pts | ||
− | |||
− | + | <font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} | |
− | + | </math></span></font> | |
− | <math>\color{blue}\ | + | <math>\color{blue} |
− | + | p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} | |
</math><br> | </math><br> | ||
− | <math>\color{blue}\ | + | <math>\color{blue} |
+ | = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}. | ||
+ | </math> | ||
− | + | <math>\color{blue} | |
− | + | \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} | |
− | </ | + | </math><br> |
+ | <math>\color{blue} | ||
+ | F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} | ||
+ | </math><br> | ||
− | + | <math>\color{blue} | |
− | + | \text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} | |
− | </math> </ | + | </math><br> |
+ | <math>\color{blue} | ||
+ | P_{\theta}(\rho) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. | ||
+ | </math><br> | ||
− | |||
− | |||
− | + | <math>\color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y). | |
− | + | ||
− | <math>\color{blue} | + | |
− | + | ||
</math><br> | </math><br> | ||
− | <math>\color{blue}\text{ | + | <math>\color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1). |
+ | </math><br> | ||
− | + | <math>\color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right). | |
− | + | </math><br> | |
− | </math> | + | |
− | + | ||
− | + | <math>\color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right). | |
− | + | </math><br> | |
− | </math> | + | |
− | + | <math>\color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y). | |
+ | </math><br> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | :'''Click [[ECE-QE_CS5-2011_solusion-2|here]] to view student [[ECE-QE_CS5-2011_solusion-2|answers and discussions]]''' | ||
---- | ---- | ||
− | + | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | |
− | [[ | + | |
− | + | ||
− | + |
Latest revision as of 09:25, 13 September 2013
Communication, Networking, Signal and Image Processing (CS)
Question 5: Image Processing
August 2011
Question
Part 1. 50 pts
$ \color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n). $
$ \color{blue} y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}. $
$ \color{blue} \text{For parts a) and b) let} $
$ \color{blue} h(m,n)=sinc(mT,nT), \text{where} T\leq1. $
$ \color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $
$ \color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2} $
$ \color{blue} \text{For parts c), d), and e) let} $
$ \color{blue} h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right) $
$ \color{blue} \text{where } T\leq1. $
$ \color{blue}\text{c) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $
$ \color{blue}\text{d) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2} $
$ \color{blue}\text{e) Calculate } y(m,n) \text{ when } x(m,n)=1. $
- Click here to view student answers and discussions
Part 2. 50 pts
$ \color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} $
$ \color{blue} p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} $
$ \color{blue} = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}. $
$ \color{blue} \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} $
$ \color{blue} F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} $
$ \color{blue} \text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} $
$ \color{blue} P_{\theta}(\rho) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. $
$ \color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y). $
$ \color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1). $
$ \color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right). $
$ \color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right). $
$ \color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y). $
- Click here to view student answers and discussions