(2 intermediate revisions by 2 users not shown)
Line 4: Line 4:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:random variables]]
 
[[Category:random variables]]
 +
[[Category:probability]]
  
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]: COMMUNICATIONS, NETWORKING, SIGNAL AND IMAGE PROESSING (CS)- Question 1, August 2000=
+
 
 +
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 
 +
August 2000
 +
</center>
 +
----
 
----
 
----
 
==Question==
 
==Question==
Line 34: Line 49:
 
'''(b)''' Determine the pdf of <math class="inline">\mathbf{Z}</math> . You can leave your answer in integral form.
 
'''(b)''' Determine the pdf of <math class="inline">\mathbf{Z}</math> . You can leave your answer in integral form.
 
:'''Click [[ECE_PhD_QE_CNSIP_2000_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2000_Problem1.4|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2000_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2000_Problem1.4|answers and discussions]]'''
----
 
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])=
 
 
''(a)'''
 
 
<math class="inline">\Phi_{\mathbf{X}}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\int_{-\infty}^{\infty}\frac{A}{2}e^{-A\left|x\right|}\cdot e^{i\omega x}dx=\frac{A}{2}\left[\int_{-\infty}^{0}e^{x\left(A+i\omega\right)}dx+\int_{0}^{\infty}e^{x\left(-A+i\omega\right)}dx\right]</math><math class="inline">=\frac{A}{2}\left[\frac{e^{x\left(A+i\omega\right)}}{A+i\omega}\biggl|_{-\infty}^{0}+\frac{e^{x\left(-A+i\omega\right)}}{-A+i\omega}\biggl|_{0}^{\infty}\right]=\frac{A}{2}\left[\frac{1}{A+i\omega}-\frac{1}{-A+i\omega}\right]</math><math class="inline">=\frac{A}{2}\cdot\frac{A-i\omega+A+i\omega}{A^{2}+\omega^{2}}=\frac{A^{2}}{A^{2}+\omega^{2}}.</math>
 
 
'''(b)'''
 
 
<math class="inline">P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|\leq2\sigma\right\} \right)=1-P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|>2\sigma\right\} \right).</math>  By [[ECE 600 Chebyshev Inequality|Chebyshev Inequality]], <math class="inline">P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|>2\sigma\right\} \right)\leq\frac{\sigma^{2}}{\left(2\sigma\right)^{2}}=\frac{1}{4}</math> .
 
 
<math class="inline">P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|\leq2\sigma\right\} \right)\geq\frac{3}{4}.</math>
 
 
'''2.'''
 
 
ref. pds means the power spectral density [[ECE 600 General Concepts of Stochastic Processes The Power Spectrum|(More information on the Power Spectrum)]].
 
 
If <math class="inline">\mathbf{X}\left(t\right)</math>  is real, then <math class="inline">R_{\mathbf{X}}\left(\tau\right)</math>  is real and even function.
 
 
<math class="inline">S_{\mathbf{X}}\left(\omega\right)=\int_{-\infty}^{\infty}R_{\mathbf{X}}\left(\tau\right)e^{-i\omega\tau}d\tau=\int_{-\infty}^{\infty}\left(R_{\mathbf{X}}\left(\tau\right)\cos\left(\omega\tau\right)-R_{\mathbf{X}}\left(\tau\right)i\sin\left(\omega\tau\right)\right)d\tau</math><math class="inline">=2\int_{0}^{\infty}R_{\mathbf{X}}\left(\tau\right)\cos\left(\omega\tau\right)d\tau\Longrightarrow\;\therefore S_{\mathbf{X}}\left(\omega\right)\text{ is real and even function.}</math>
 
 
<math class="inline">R_{\mathbf{X}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{X}}\left(\omega\right)e^{i\omega\tau}d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\cos\left(\omega\tau\right)d\omega.</math>
 
 
<math class="inline">R_{\mathbf{X}}\left(0\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{X}}\left(\omega\right)e^{i\omega0}d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)d\omega.</math>
 
 
<math class="inline">R_{\mathbf{X}}\left(0\right)-R_{\mathbf{X}}\left(\tau\right)=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\left(1-\cos\left(\omega\tau\right)\right)d\omega=\frac{1}{\pi}\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\left(2\sin^{2}\left(\frac{\omega\tau}{2}\right)\right)d\omega</math><math class="inline">\leq\frac{2}{\pi}\left|\int_{0}^{\omega_{max}}S_{\mathbf{X}}\left(\omega\right)\sin^{2}\left(\frac{\omega\tau}{2}\right)d\omega\right|\leq\frac{2}{\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|\left|\sin\left(\frac{\omega\tau}{2}\right)\right|^{2}d\omega</math><math class="inline">\leq\frac{2}{\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|\left(\frac{\omega^{2}\tau^{2}}{4}\right)d\omega\leq\frac{\omega_{max}^{2}\tau^{2}}{2\pi}\int_{0}^{\omega_{max}}\left|S_{\mathbf{X}}\left(\omega\right)\right|d\omega</math><math class="inline">\leq\frac{\omega_{max}^{2}\tau^{2}}{2\pi}\pi R_{\mathbf{X}}\left(0\right)=\frac{\omega_{max}^{2}\tau^{2}}{2}R_{\mathbf{X}}\left(0\right).</math>
 
 
<math class="inline">\therefore R_{\mathbf{X}}\left(0\right)-R_{\mathbf{X}}\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R_{\mathbf{X}}\left(0\right).</math>
 
 
<math class="inline">\because\cos\left(\omega\tau\right)=\cos^{2}\left(\frac{\omega\tau}{2}\right)-\sin^{2}\left(\frac{\omega\tau}{2}\right)=1-2\sin^{2}\left(\frac{\omega\tau}{2}\right).</math>
 
 
'''3.'''
 
 
 
<math class="inline">\lambda=\frac{15}{60\text{ sec}}=\frac{1}{4}\text{ sec}^{-1}.</math>
 
 
<math class="inline">P\left(\left\{ N\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left(\left(\lambda\left(t_{2}-t_{1}\right)\right)^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}\right)}{k!}.</math>
 
 
<math class="inline">P\left(\left\{ N\left(0,10\right)=3\right\} \cap\left\{ N\left(45,60\right)=2\right\} \right)=P\left(\left\{ N\left(0,10\right)=3\right\} \right)P\left(\left\{ N\left(45,60\right)=2\right\} \right)</math><math class="inline">=\frac{\left(\frac{1}{4}\times10\right)^{3}e^{-\frac{1}{4}\times10}}{3!}\times\frac{\left(\frac{1}{4}\times15\right)^{2}e^{-\frac{1}{4}\times15}}{2!}</math><math class="inline">=\frac{1}{12}\cdot\left(\frac{5}{2}\right)^{3}\left(\frac{15}{4}\right)^{2}e^{-\frac{25}{4}}.</math>
 
 
'''4.'''
 
 
 
 
'''(a)'''
 
 
<math class="inline">\Phi_{\mathbf{Z}}\left(\omega\right)=E\left[e^{i\omega\mathbf{Z}}\right]=E\left[e^{i\omega\sum_{n=0}^{8}\mathbf{X}_{n}}\right]=E\left[\prod_{n=0}^{8}e^{i\omega\mathbf{X}_{n}}\right]=\prod_{n=0}^{8}E\left[e^{i\omega\mathbf{X}_{n}}\right]=\left(\frac{1}{1-j\omega/2}\right)^{9}.</math>
 
 
'''(b)'''
 
 
<math class="inline">f_{\mathbf{Z}}\left(z\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\Phi_{\mathbf{Z}}\left(\omega\right)e^{-i\omega z}d\omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}\left(\frac{1}{1-j\omega/2}\right)^{9}e^{-i\omega z}d\omega.</math>
 
 
----
 
==Solution 2==
 
Write it here.
 
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 09:19, 13 September 2013


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2000



Question

Part 1.

a) The Laplacian density function is given by $ f\left(x\right)=\frac{A}{2}e^{-A\left|x\right|}\text{ where }A>0. $ Determine its characteristic function.

b) Determine a bound on the probability that a RV is within two standard deviations of its mean.

Click here to view student answers and discussions

Part 2.

$ \mathbf{X}\left(t\right) $ is a WSS process with its psd zero outside the interval $ \left[-\omega_{max},\ \omega_{max}\right] $ . If $ R\left(\tau\right) $ is the autocorrelation function of $ \mathbf{X}\left(t\right) $ , prove the following: $ R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right). $ (Hint: $ \left|\sin\theta\right|\leq\left|\theta\right| $ ).

Click here to view student answers and discussions

Part 3.

Inquiries arrive at a recorded message device according to a Poisson process of rate 15 inquiries per minute. Find the probability that in a 1-minute period, 3 inquiries arrive during the first 10 seconds and 2 inquiries arrive during the last 15 seconds.

Click here to view student answers and discussions

Part 4.

A RV is given by $ \mathbf{Z}=\sum_{n=0}^{8}\mathbf{X}_{n} $ where $ \mathbf{X}_{n} $ 's are i.i.d. RVs with characteristic function given by $ \Phi_{\mathbf{X}}\left(\omega\right)=\frac{1}{1-j\omega/2}. $

(a) Determine the characteristic function of $ \mathbf{Z} $ .

(b) Determine the pdf of $ \mathbf{Z} $ . You can leave your answer in integral form.

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman