(4 intermediate revisions by 2 users not shown)
Line 4: Line 4:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:random variables]]
 
[[Category:random variables]]
 +
[[Category:probability]]
  
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]: COMMUNICATIONS, NETWORKING, SIGNAL AND IMAGE PROESSING (CS)- Question 1, August 2000=
+
 
 +
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 
 +
August 2000
 +
</center>
 +
----
 
----
 
----
 
==Question==
 
==Question==
Write it here
+
'''Part 1.'''
 +
 
 +
a) The Laplacian density function is given by <math class="inline">f\left(x\right)=\frac{A}{2}e^{-A\left|x\right|}\text{ where }A>0.</math> Determine its characteristic function.
 +
 
 +
b) Determine a bound on the probability that a RV is within two standard deviations of its mean.
 +
 
 +
:'''Click [[ECE_PhD_QE_CNSIP_2000_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2000_Problem1.1|answers and discussions]]'''
 
----
 
----
=Solution 1 (retrived from [[ |here]])=
+
'''Part 2.''' 
  
 +
<math class="inline">\mathbf{X}\left(t\right)</math>  is a WSS process with its psd zero outside the interval <math class="inline">\left[-\omega_{max},\ \omega_{max}\right]</math> . If <math class="inline">R\left(\tau\right)</math>  is the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math> , prove the following: <math class="inline">R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right).</math> (Hint: <math class="inline">\left|\sin\theta\right|\leq\left|\theta\right|</math> ).
 +
:'''Click [[ECE_PhD_QE_CNSIP_2000_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2000_Problem1.2|answers and discussions]]'''
 +
----
 +
'''Part 3.'''
  
 +
Inquiries arrive at a recorded message device according to a Poisson process of rate 15  inquiries per minute. Find the probability that in a 1-minute period, 3 inquiries arrive during the first 10 seconds and 2 inquiries arrive during the last 15 seconds.
 +
:'''Click [[ECE_PhD_QE_CNSIP_2000_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2000_Problem1.3|answers and discussions]]'''
 
----
 
----
==Solution 2==
+
'''Part 4.'''
Write it here.
+
 
 +
A RV is given by <math class="inline">\mathbf{Z}=\sum_{n=0}^{8}\mathbf{X}_{n}</math> where <math class="inline">\mathbf{X}_{n}</math> 's are i.i.d.  RVs with characteristic function given by <math class="inline">\Phi_{\mathbf{X}}\left(\omega\right)=\frac{1}{1-j\omega/2}.</math>
 +
 
 +
'''(a)''' Determine the characteristic function of <math class="inline">\mathbf{Z}</math> .
 +
 
 +
'''(b)''' Determine the pdf of <math class="inline">\mathbf{Z}</math> . You can leave your answer in integral form.
 +
:'''Click [[ECE_PhD_QE_CNSIP_2000_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2000_Problem1.4|answers and discussions]]'''
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 09:19, 13 September 2013


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2000



Question

Part 1.

a) The Laplacian density function is given by $ f\left(x\right)=\frac{A}{2}e^{-A\left|x\right|}\text{ where }A>0. $ Determine its characteristic function.

b) Determine a bound on the probability that a RV is within two standard deviations of its mean.

Click here to view student answers and discussions

Part 2.

$ \mathbf{X}\left(t\right) $ is a WSS process with its psd zero outside the interval $ \left[-\omega_{max},\ \omega_{max}\right] $ . If $ R\left(\tau\right) $ is the autocorrelation function of $ \mathbf{X}\left(t\right) $ , prove the following: $ R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right). $ (Hint: $ \left|\sin\theta\right|\leq\left|\theta\right| $ ).

Click here to view student answers and discussions

Part 3.

Inquiries arrive at a recorded message device according to a Poisson process of rate 15 inquiries per minute. Find the probability that in a 1-minute period, 3 inquiries arrive during the first 10 seconds and 2 inquiries arrive during the last 15 seconds.

Click here to view student answers and discussions

Part 4.

A RV is given by $ \mathbf{Z}=\sum_{n=0}^{8}\mathbf{X}_{n} $ where $ \mathbf{X}_{n} $ 's are i.i.d. RVs with characteristic function given by $ \Phi_{\mathbf{X}}\left(\omega\right)=\frac{1}{1-j\omega/2}. $

(a) Determine the characteristic function of $ \mathbf{Z} $ .

(b) Determine the pdf of $ \mathbf{Z} $ . You can leave your answer in integral form.

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics