(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:automatic control]]
 +
[[Category:optimization]]
  
 
=QE2012_AC-3_ECE580-3=
 
=QE2012_AC-3_ECE580-3=
  
 
+
:[[QE2012_AC-3_ECE580-1|Part 1]],[[QE2012_AC-3_ECE580-2|2]],[[QE2012_AC-3_ECE580-3|3]],[[QE2012_AC-3_ECE580-4|4]],[[QE2012_AC-3_ECE580-5|5]]
  
  
Line 139: Line 145:
  
 
<br>  
 
<br>  
 +
 +
----
 +
----
 +
<font face="serif"></font><math>\color{blue}\text{Related Problem: }</math>
 +
 +
<math>
 +
\text{Given the matrix A and vector b:}
 +
A=\begin{bmatrix}
 +
  2 & 1  \\
 +
  3 & 1  \\
 +
  4 & 1
 +
\end{bmatrix}
 +
b=\begin{bmatrix}
 +
  3\\
 +
  4  \\
 +
  15
 +
\end{bmatrix}
 +
</math>
 +
 +
 +
'''Find the vector <math>x^{(\ast)}</math> that minimizes <math>\| Ax -b\|^{2}_2</math> '''
 +
 +
 +
'''Solution:'''
 +
 +
<math>
 +
x^{(\ast)}=A^{\dagger}=(A^T A)^{-1}A^T b= \begin{bmatrix}
 +
  -0.5 & 0 & 0.5  \\
 +
  11/6 & 1/3 & 7/6  \\
 +
\end{bmatrix}
 +
\begin{bmatrix}
 +
  3\\
 +
  4  \\
 +
  15
 +
\end{bmatrix}=\begin{bmatrix}
 +
  6 \\
 +
  -\frac{32}{3} \\
 +
  0
 +
\end{bmatrix}
 +
</math>
  
  

Latest revision as of 09:12, 13 September 2013


QE2012_AC-3_ECE580-3

Part 1,2,3,4,5



Solutions:

      $ A = BC = \begin{bmatrix}   1 & 0  \\   0 & 1   \\   0 & -1  \end{bmatrix} \begin{bmatrix}   1 & 0 &-1  \\   0 & 1 & 0    \end{bmatrix} $
      $ B^{\dagger} = (B^T B)^{-1}B^T = \begin{bmatrix}   1 & 0 \\   0 & 2    \end{bmatrix}^{-1} \begin{bmatrix}   1 & 0 & 0  \\   0 & 1 & -1    \end{bmatrix} = \begin{bmatrix}   1 & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}    \end{bmatrix} $
      $ C^{\dagger} = C^T(CC^T)^{-1} =\begin{bmatrix}   1 & 0  \\   0 & 1   \\   -1 & 0  \end{bmatrix} \begin{bmatrix}   2 & 0 \\   0 & 1    \end{bmatrix}^{-1} = \begin{bmatrix}   \frac{1}{2} & 0  \\   0 & 1   \\   -\frac{1}{2} & 0  \end{bmatrix}  $
      $ A^{\dagger} = C^{\dagger}B^{\dagger} =\begin{bmatrix}   \frac{1}{2} & 0  \\   0 & 1   \\   -\frac{1}{2} & 0  \end{bmatrix} \begin{bmatrix}   1 & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}    \end{bmatrix} =  \begin{bmatrix}   \frac{1}{2} & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}  \\   -\frac{1}{2} & 0 & 0  \end{bmatrix} $
      $  x^{\ast} = A^{\dagger} b = \begin{bmatrix}   \frac{1}{2} & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}  \\   -\frac{1}{2} & 0 & 0  \end{bmatrix}\begin{bmatrix}   0 \\   \frac{1}{2} \\   1  \end{bmatrix} = \begin{bmatrix}   0 \\   \frac{1}{2} \\   0  \end{bmatrix} $


Solution 2:

$ x^{(\ast)}=A^{\dagger}b $

Since $ A = BC = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 &-1 \\ 0 & 1 & 0 \end{bmatrix} $

$ B^{\dagger} = (B^T B)^{-1}B^T = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} $

      $ C^{\dagger} = C^T(CC^T)^{-1} =\begin{bmatrix}   1 & 0  \\   0 & 1   \\   -1 & 0  \end{bmatrix} \begin{bmatrix}   2 & 0 \\   0 & 1    \end{bmatrix}^{-1} = \begin{bmatrix}   \frac{1}{2} & 0  \\   0 & 1   \\   -\frac{1}{2} & 0  \end{bmatrix}  $
      $ A^{\dagger} = C^{\dagger}B^{\dagger} =\begin{bmatrix}   \frac{1}{2} & 0  \\   0 & 1   \\   -\frac{1}{2} & 0  \end{bmatrix} \begin{bmatrix}   1 & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}    \end{bmatrix} =  \begin{bmatrix}   \frac{1}{2} & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}  \\   -\frac{1}{2} & 0 & 0  \end{bmatrix} $
      $  x^{\ast} = A^{\dagger} b = \begin{bmatrix}   \frac{1}{2} & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}  \\   -\frac{1}{2} & 0 & 0  \end{bmatrix}\begin{bmatrix}   0 \\   \frac{1}{2} \\   1  \end{bmatrix} = \begin{bmatrix}   0 \\   \frac{1}{2} \\   0  \end{bmatrix} $

$ \color{blue} \text{ The pseudo inverse of a matrix has the property } (BC)^{\dagger}=C^{\dagger}B^{\dagger} $




$ \color{blue}\text{Related Problem: } $

$ \text{Given the matrix A and vector b:} A=\begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} b=\begin{bmatrix} 3\\ 4 \\ 15 \end{bmatrix} $


Find the vector $ x^{(\ast)} $ that minimizes $ \| Ax -b\|^{2}_2 $


Solution:

$ x^{(\ast)}=A^{\dagger}=(A^T A)^{-1}A^T b= \begin{bmatrix} -0.5 & 0 & 0.5 \\ 11/6 & 1/3 & 7/6 \\ \end{bmatrix} \begin{bmatrix} 3\\ 4 \\ 15 \end{bmatrix}=\begin{bmatrix} 6 \\ -\frac{32}{3} \\ 0 \end{bmatrix} $



Back to QE2012 AC-3 ECE580

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva