(4 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | [[Category:ECE]] | |
+ | [[Category:QE]] | ||
+ | [[Category:CNSIP]] | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:automatic control]] | ||
+ | [[Category:optimization]] | ||
=QE2012_AC-3_ECE580-3= | =QE2012_AC-3_ECE580-3= | ||
+ | |||
+ | :[[QE2012_AC-3_ECE580-1|Part 1]],[[QE2012_AC-3_ECE580-2|2]],[[QE2012_AC-3_ECE580-3|3]],[[QE2012_AC-3_ECE580-4|4]],[[QE2012_AC-3_ECE580-5|5]] | ||
+ | |||
+ | |||
+ | <br> Solutions: | ||
+ | |||
+ | <math>A = BC = \begin{bmatrix} | ||
+ | 1 & 0 \\ | ||
+ | 0 & 1 \\ | ||
+ | 0 & -1 | ||
+ | \end{bmatrix} \begin{bmatrix} | ||
+ | 1 & 0 &-1 \\ | ||
+ | 0 & 1 & 0 | ||
+ | \end{bmatrix}</math> | ||
+ | |||
+ | <math>B^{\dagger} = (B^T B)^{-1}B^T = \begin{bmatrix} | ||
+ | 1 & 0 \\ | ||
+ | 0 & 2 | ||
+ | \end{bmatrix}^{-1} \begin{bmatrix} | ||
+ | 1 & 0 & 0 \\ | ||
+ | 0 & 1 & -1 | ||
+ | \end{bmatrix} = \begin{bmatrix} | ||
+ | 1 & 0 & 0 \\ | ||
+ | 0 & \frac{1}{2} & -\frac{1}{2} | ||
+ | \end{bmatrix}</math> | ||
+ | |||
+ | <math>C^{\dagger} = C^T(CC^T)^{-1} =\begin{bmatrix} | ||
+ | 1 & 0 \\ | ||
+ | 0 & 1 \\ | ||
+ | -1 & 0 | ||
+ | \end{bmatrix} \begin{bmatrix} | ||
+ | 2 & 0 \\ | ||
+ | 0 & 1 | ||
+ | \end{bmatrix}^{-1} = \begin{bmatrix} | ||
+ | \frac{1}{2} & 0 \\ | ||
+ | 0 & 1 \\ | ||
+ | -\frac{1}{2} & 0 | ||
+ | \end{bmatrix} </math> | ||
+ | |||
+ | <math>A^{\dagger} = C^{\dagger}B^{\dagger} =\begin{bmatrix} | ||
+ | \frac{1}{2} & 0 \\ | ||
+ | 0 & 1 \\ | ||
+ | -\frac{1}{2} & 0 | ||
+ | \end{bmatrix} \begin{bmatrix} | ||
+ | 1 & 0 & 0 \\ | ||
+ | 0 & \frac{1}{2} & -\frac{1}{2} | ||
+ | \end{bmatrix} = \begin{bmatrix} | ||
+ | \frac{1}{2} & 0 & 0 \\ | ||
+ | 0 & \frac{1}{2} & -\frac{1}{2} \\ | ||
+ | -\frac{1}{2} & 0 & 0 | ||
+ | \end{bmatrix}</math> | ||
+ | |||
+ | <math> x^{\ast} = A^{\dagger} b = \begin{bmatrix} | ||
+ | \frac{1}{2} & 0 & 0 \\ | ||
+ | 0 & \frac{1}{2} & -\frac{1}{2} \\ | ||
+ | -\frac{1}{2} & 0 & 0 | ||
+ | \end{bmatrix}\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | \frac{1}{2} \\ | ||
+ | 1 | ||
+ | \end{bmatrix} = \begin{bmatrix} | ||
+ | 0 \\ | ||
+ | \frac{1}{2} \\ | ||
+ | 0 | ||
+ | \end{bmatrix}</math> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | Solution 2: | ||
+ | |||
+ | <math>x^{(\ast)}=A^{\dagger}b</math> | ||
+ | |||
+ | Since <math>A = BC = \begin{bmatrix} | ||
+ | 1 & 0 \\ | ||
+ | 0 & 1 \\ | ||
+ | 0 & -1 | ||
+ | \end{bmatrix} \begin{bmatrix} | ||
+ | 1 & 0 &-1 \\ | ||
+ | 0 & 1 & 0 | ||
+ | \end{bmatrix}</math> | ||
+ | |||
+ | <math>B^{\dagger} = (B^T B)^{-1}B^T = \begin{bmatrix} | ||
+ | 1 & 0 \\ | ||
+ | 0 & 2 | ||
+ | \end{bmatrix}^{-1} \begin{bmatrix} | ||
+ | 1 & 0 & 0 \\ | ||
+ | 0 & 1 & -1 | ||
+ | \end{bmatrix} = \begin{bmatrix} | ||
+ | 1 & 0 & 0 \\ | ||
+ | 0 & \frac{1}{2} & -\frac{1}{2} | ||
+ | \end{bmatrix}</math> | ||
+ | |||
+ | <math>C^{\dagger} = C^T(CC^T)^{-1} =\begin{bmatrix} | ||
+ | 1 & 0 \\ | ||
+ | 0 & 1 \\ | ||
+ | -1 & 0 | ||
+ | \end{bmatrix} \begin{bmatrix} | ||
+ | 2 & 0 \\ | ||
+ | 0 & 1 | ||
+ | \end{bmatrix}^{-1} = \begin{bmatrix} | ||
+ | \frac{1}{2} & 0 \\ | ||
+ | 0 & 1 \\ | ||
+ | -\frac{1}{2} & 0 | ||
+ | \end{bmatrix} </math> | ||
+ | |||
+ | <math>A^{\dagger} = C^{\dagger}B^{\dagger} =\begin{bmatrix} | ||
+ | \frac{1}{2} & 0 \\ | ||
+ | 0 & 1 \\ | ||
+ | -\frac{1}{2} & 0 | ||
+ | \end{bmatrix} \begin{bmatrix} | ||
+ | 1 & 0 & 0 \\ | ||
+ | 0 & \frac{1}{2} & -\frac{1}{2} | ||
+ | \end{bmatrix} = \begin{bmatrix} | ||
+ | \frac{1}{2} & 0 & 0 \\ | ||
+ | 0 & \frac{1}{2} & -\frac{1}{2} \\ | ||
+ | -\frac{1}{2} & 0 & 0 | ||
+ | \end{bmatrix}</math> | ||
+ | |||
+ | <math> x^{\ast} = A^{\dagger} b = \begin{bmatrix} | ||
+ | \frac{1}{2} & 0 & 0 \\ | ||
+ | 0 & \frac{1}{2} & -\frac{1}{2} \\ | ||
+ | -\frac{1}{2} & 0 & 0 | ||
+ | \end{bmatrix}\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | \frac{1}{2} \\ | ||
+ | 1 | ||
+ | \end{bmatrix} = \begin{bmatrix} | ||
+ | 0 \\ | ||
+ | \frac{1}{2} \\ | ||
+ | 0 | ||
+ | \end{bmatrix}</math> | ||
+ | |||
+ | <font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue} | ||
+ | \text{ The pseudo inverse of a matrix has the property } | ||
+ | (BC)^{\dagger}=C^{\dagger}B^{\dagger} | ||
+ | </math></span></font> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ---- | ||
+ | ---- | ||
+ | <font face="serif"></font><math>\color{blue}\text{Related Problem: }</math> | ||
+ | |||
+ | <math> | ||
+ | \text{Given the matrix A and vector b:} | ||
+ | A=\begin{bmatrix} | ||
+ | 2 & 1 \\ | ||
+ | 3 & 1 \\ | ||
+ | 4 & 1 | ||
+ | \end{bmatrix} | ||
+ | b=\begin{bmatrix} | ||
+ | 3\\ | ||
+ | 4 \\ | ||
+ | 15 | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | '''Find the vector <math>x^{(\ast)}</math> that minimizes <math>\| Ax -b\|^{2}_2</math> ''' | ||
+ | '''Solution:''' | ||
− | + | <math> | |
+ | x^{(\ast)}=A^{\dagger}=(A^T A)^{-1}A^T b= \begin{bmatrix} | ||
+ | -0.5 & 0 & 0.5 \\ | ||
+ | 11/6 & 1/3 & 7/6 \\ | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | 3\\ | ||
+ | 4 \\ | ||
+ | 15 | ||
+ | \end{bmatrix}=\begin{bmatrix} | ||
+ | 6 \\ | ||
+ | -\frac{32}{3} \\ | ||
+ | 0 | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
Latest revision as of 09:12, 13 September 2013
QE2012_AC-3_ECE580-3
Solutions:
$ A = BC = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 &-1 \\ 0 & 1 & 0 \end{bmatrix} $
$ B^{\dagger} = (B^T B)^{-1}B^T = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} $
$ C^{\dagger} = C^T(CC^T)^{-1} =\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \\ -\frac{1}{2} & 0 \end{bmatrix} $
$ A^{\dagger} = C^{\dagger}B^{\dagger} =\begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \\ -\frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 0 & 0 \end{bmatrix} $
$ x^{\ast} = A^{\dagger} b = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 0 & 0 \end{bmatrix}\begin{bmatrix} 0 \\ \frac{1}{2} \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \end{bmatrix} $
Solution 2:
$ x^{(\ast)}=A^{\dagger}b $
Since $ A = BC = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 &-1 \\ 0 & 1 & 0 \end{bmatrix} $
$ B^{\dagger} = (B^T B)^{-1}B^T = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} $
$ C^{\dagger} = C^T(CC^T)^{-1} =\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \\ -\frac{1}{2} & 0 \end{bmatrix} $
$ A^{\dagger} = C^{\dagger}B^{\dagger} =\begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \\ -\frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 0 & 0 \end{bmatrix} $
$ x^{\ast} = A^{\dagger} b = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 0 & 0 \end{bmatrix}\begin{bmatrix} 0 \\ \frac{1}{2} \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \end{bmatrix} $
$ \color{blue} \text{ The pseudo inverse of a matrix has the property } (BC)^{\dagger}=C^{\dagger}B^{\dagger} $
$ \color{blue}\text{Related Problem: } $
$ \text{Given the matrix A and vector b:} A=\begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} b=\begin{bmatrix} 3\\ 4 \\ 15 \end{bmatrix} $
Find the vector $ x^{(\ast)} $ that minimizes $ \| Ax -b\|^{2}_2 $
Solution:
$ x^{(\ast)}=A^{\dagger}=(A^T A)^{-1}A^T b= \begin{bmatrix} -0.5 & 0 & 0.5 \\ 11/6 & 1/3 & 7/6 \\ \end{bmatrix} \begin{bmatrix} 3\\ 4 \\ 15 \end{bmatrix}=\begin{bmatrix} 6 \\ -\frac{32}{3} \\ 0 \end{bmatrix} $