(51 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<br>
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:automatic control]]
 +
[[Category:optimization]]
  
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]]: Automatic Control (AC)- Question 3, August 2011 =
+
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC) =
 +
 
 +
= [[ECE-QE_AC3-2011|Question 3, August 2011]], Part 5=
 +
 
 +
:[[ECE-QE AC3-2011 solusion-1|Part 1]],[[ECE-QE AC3-2011 solusion-2|2]],[[ECE-QE AC3-2011 solusion-3|3]],[[ECE-QE AC3-2011 solusion-4|4]],[[ECE-QE_AC3-2011_solusion-5|5]]
 +
 
 +
----
  
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, }</math></span></font>  
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the following optimization problem, }</math></span></font>  
  
 
<font color="#ff0000">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;</font><math>\text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math>  
 
<font color="#ff0000">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;</font><math>\text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math>  
Line 9: Line 20:
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  x_{2}- x_{1}^{2}\geq0</math>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  x_{2}- x_{1}^{2}\geq0</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>2-x_{1}-x_{2}\geq0, x_{1}\geq0.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>2-x_{1}-x_{2}\geq0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1}\geq0.</math>  
  
 
<math>\color{blue} \text{The point }  x^{*}=\begin{bmatrix}
 
<math>\color{blue} \text{The point }  x^{*}=\begin{bmatrix}
 
0 & 0  
 
0 & 0  
\end{bmatrix}^{T} \text{ satisfies the KKT conditions.}</math>  
+
\end{bmatrix}^{T} \text{ satisfies the KKT conditions.}</math><br>
 +
 
 +
----
 +
 
 +
'''Theorem:'''
 +
 
 +
For the problem: &nbsp; &nbsp;minimize &nbsp;<math>f \left( x \right)</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;subject to &nbsp;&nbsp;<math>h \left( x \right) =0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>g \left( x \right) \leq 0</math>
 +
 
 +
The '''KKT condition (FONC) '''for local minimizer&nbsp;<span class="texhtml">''x''<sup> * </sup></span>&nbsp;of <span class="texhtml">''f''</span>&nbsp;is:
 +
 
 +
<font color="#ff0000"><span style="font-size: 17px;">'''&nbsp; &nbsp; &nbsp;&nbsp;<math>\text{1. } \mu^{*}\geq0</math>'''</span></font>
 +
 
 +
<font color="#ff0000"><span style="font-size: 20px;">'''&nbsp; &nbsp; &nbsp;<math>\text{2. } Df\left ( x^{*} \right )+\lambda ^{*T}Dh\left ( x^{*} \right )+\mu ^{*T}Dg\left ( x^{*} \right )=0^{T}</math>'''</span></font>
 +
 
 +
<font color="#ff0000">&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{3. } \mu ^{*T}g\left ( x^{*} \right )=0</math><br></font>
 +
 
 +
<font color="#ff0000"></font>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{4. } h\left ( x^{*} \right )=0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{5. } g \left( x^{*}  \right) \leq0</math><br>
 +
 
 +
'''Definision: Regular point''' &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x^{*} \text{ satisfy } h\left( x^{*} \right)=0, g\left( x^{*} \right)\leq0 \text{ and let } J\left(x^{*}\right)= \left \{  j:g_{j}\left(x^{*}\right)=0 \right \}</math>
 +
 
 +
'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x^{*}\text{ is regular point if } \nabla h_{i} \left( x^{*} \right),  \nabla g_{j} \left( x^{*} \right),  1\leq i\leq m, j\in J \left( x^{*} \right)</math> '''
 +
 
 +
'''SONC: '''Suppose that&nbsp;<span class="texhtml">''x''<sup> * </sup></span>&nbsp;is regular<br> &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{1. } \mu ^{*}\geq0 \text{, } Df\left ( x^{*} \right )+\lambda ^{*T}Dh\left ( x^{*} \right )+\mu ^{*T}Dg\left ( x^{*} \right )=0^{T} \text{, } \mu ^{*T}g\left ( x^{*} \right )=0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{2. For all } y\in T\left( x^{*} \right ) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast }, \lambda ^{\ast }\right )y\geq 0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in J\left( x^{*} \right)  \right \}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>J\left(x^{*}\right)= \left \{  j:g_{j}\left(x^{*}\right)=0 \right \}</math>
 +
 
 +
'''SOSC:''' There exist a feasible point&nbsp;<span class="texhtml">''x''<sup> *&nbsp;<sub></sub><sub></sub></sup></span>that&nbsp;
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{1. } \mu ^{*}\geq0 \text{, } Df\left ( x^{*} \right )+\lambda ^{*T}Dh\left ( x^{*} \right )+\mu ^{*T}Dg\left ( x^{*} \right )=0^{T} \text{, } \mu ^{*T}g\left ( x^{*} \right )=0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{2. For all } y\in \tilde{T}\left( x^{* }\mu^{*} \right) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast }, \lambda ^{\ast }\right )y\geq 0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right)  \right \}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \}</math>
 +
 
 +
'''Process:'''
 +
 
 +
&nbsp; &nbsp; &nbsp; a. Write down the KKT condition for this probelm
 +
 
 +
&nbsp; &nbsp; &nbsp; b. Find all points (and KKT multipliers) satisfying the KKT condition. In each case, determine if the point is regular.
 +
 
 +
&nbsp; &nbsp; &nbsp; c. Find all points in part b that also satisfy the SONC.
 +
 
 +
&nbsp; &nbsp; &nbsp; d. Find all points in part c that also satisfy the SOSC.
 +
 
 +
&nbsp; &nbsp; &nbsp; e. Find all points in part c that are local minimizers.
 +
 
 +
----
  
 
<math>\color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?}</math>  
 
<math>\color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?}</math>  
  
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>f\left( x \right) = \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>g_{1}\left( x \right)=x_{1}^{2}-x_{2}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>g_{2}\left( x \right)= x_{1}+x_{2}-2</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>g_{3}\left( x \right)= -x_{1}</math>
 +
 +
&nbsp;<math>\text{ The problem is to optimize f(x), subject to } g_{1}\leq 0, g_{2}\leq 0, g_{3}\leq 0</math>
 +
 +
<math>\text{Let }  l\left( \mu ,\lambda \right)=\nabla f\left(x  \right)+\mu_{1} \nabla g_{1}\left( x \right)+\mu_{2} \nabla g_{2}\left( x \right)+\mu_{3} \nabla g_{3}\left( x \right)</math>
 +
 +
<font color="#ff0000"><span style="font-size: 17px;">'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>=\begin{pmatrix}
 +
2x_{1}-4\\
 +
2x_{2}-2
 +
\end{pmatrix} +\mu_{1} \begin{pmatrix}
 +
2x_{1}\\
 +
-1
 +
\end{pmatrix}+\mu_{2}+\begin{pmatrix}
 +
1\\
 +
1
 +
\end{pmatrix}+\mu_{3}+\begin{pmatrix}
 +
-1\\
 +
0
 +
\end{pmatrix} =0</math>'''
 +
</span></font>
 +
 +
<math>\mu_{1} g_{1}\left( x \right)+\mu_{2} g_{2}\left( x \right)+\mu_{3} g_{3}\left( x \right)</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>= \mu_{1} \left( x_{1}^2-x_{2} \right)+\mu_{2} \left( x_{1}+x_{2}-2 \right)+\mu_{3} \left( -x_{1} \right) =0</math><br>
 +
 +
<math>\text{Let } x^{*}=\begin{bmatrix}
 +
0\\
 +
0
 +
\end{bmatrix} \text{, }</math><br>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\left\{\begin{matrix}
 +
\nabla l\left( x,\mu \right)=\begin{pmatrix}
 +
-4+\mu_{2}-\mu_{3}\\
 +
-2-\mu_{1}-\mu_{2}
 +
\end{pmatrix}= \begin{pmatrix} 0 \\ 0\end{pmatrix} \\
 +
-2\mu_{2}=0
 +
\end{matrix}\right. \Rightarrow \left\{\begin{matrix}
 +
\mu_{1}=-2\\
 +
\mu_{2}=0\\
 +
\mu_{3}=-4
 +
\end{matrix}\right.</math>
 +
 +
<math>\text{As } \mu^{*}\leq 0, x^{*}\begin{bmatrix}
 +
0\\0
 +
\end{bmatrix} \text{satisfies the FONC for maximum.}</math>
 +
 +
----
 +
 +
<math>\color{blue}\text{Solution 2:}</math>
  
 
<math>\text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math><br>  
 
<math>\text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math><br>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\text{subject to  }  g_{1}\left( x \right) x_{1}^{2}-x_{2}\leq0</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\text{subject to  }  g_{1}\left( x \right)= x_{1}^{2}-x_{2}\leq0</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>g_{2}\left( x \right) x_{1}+x_{2}-2\leq0</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>g_{2}\left( x \right)= x_{1}+x_{2}-2\leq0</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>g_{3}\left( x \right) -x_{1}\leq0</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>g_{3}\left( x \right)= -x_{1}\leq0</math>  
  
 
<math>\text{KKT condition: (1) } Dl\left( \mu ,\lambda \right)=Df\left(x  \right)+\mu_{1}Dg_{1}\left( x \right)+\mu_{2}Dg_{2}\left( x \right)+\mu_{3}Dg_{3}\left( x \right)</math><br>  
 
<math>\text{KKT condition: (1) } Dl\left( \mu ,\lambda \right)=Df\left(x  \right)+\mu_{1}Dg_{1}\left( x \right)+\mu_{2}Dg_{2}\left( x \right)+\mu_{3}Dg_{3}\left( x \right)</math><br>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>=\left [ 2x_{1}-4+2\mu_{1}x_{1}+\mu_{2}-\mu_{3}, 2x_{2}-2-\mu_{1}+\mu_{2} \right ]</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>=\left [ 2x_{1}-4+2\mu_{1}x_{1}+\mu_{2}-\mu_{3}, 2x_{2}-2-\mu_{1}+\mu_{2} \right ]=0</math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\left ( 2 \right ) \mu^{T}g\left ( x \right )=0 \Rightarrow  \mu_{1}\left ( x_{1}^2-x_{2} \right )+\mu_{2}\left ( x_{1}+x_{2}-2 \right ) - \mu_{3}x_{1}=0</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\left ( 2 \right ) \mu^{T}g\left ( x \right )=0 \Rightarrow  \mu_{1}\left ( x_{2}^2-x_{2} \right )+\mu_{2}\left ( x_{1}+x_{2}-2 \right ) - \mu_{3}x_{1}=0</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\left ( 3 \right ) \mu_{1},\mu_{2},\mu_{3}\geq 0 \text{ for minimizer}</math><br>  
  
<math>\left ( 3 \right ) \mu_{1},\mu_{2},\mu_{3}\geq 0 \text{ for minimizer}</math><br>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\mu_{1},\mu_{2},\mu_{3}\leq 0 \text{ for maximizer}</math>  
  
<math>\mu_{1},\mu_{2},\mu_{3}\leq 0 \text{ for maximizer}</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\text{where } \mu^{*}=\begin{bmatrix}
 
+
<math>\text{where } \mu^{*}=\begin{bmatrix}
+
 
\mu_{1}\\  
 
\mu_{1}\\  
 
\mu_{2}\\  
 
\mu_{2}\\  
 
\mu_{3}
 
\mu_{3}
\end{bmatrix} \text{ are the KKT multiplier.}</math>
+
\end{bmatrix} \text{ are the KKT multiplier.}</math>  
  
 
<math>\text{For } x^{*}=\begin{bmatrix}
 
<math>\text{For } x^{*}=\begin{bmatrix}
 
0\\  
 
0\\  
 
0
 
0
\end{bmatrix} \text{, }</math>&nbsp; &nbsp;&nbsp;
+
\end{bmatrix} \text{, }</math>&nbsp; &nbsp; &nbsp; &nbsp;<math>\left\{\begin{matrix}
 
+
<math>\left\{\begin{matrix}
+
 
\nabla l\left( x,\mu \right)=\begin{pmatrix}
 
\nabla l\left( x,\mu \right)=\begin{pmatrix}
 
-4+\mu_{2}-\mu_{3}\\  
 
-4+\mu_{2}-\mu_{3}\\  
-2-\mu_{1}-\mu_{2}
+
-2-\mu_{1}+\mu_{2}
\end{pmatrix}=\binom{0}{0} \\  
+
\end{pmatrix}=\begin{pmatrix} 0\\0 \end{pmatrix}\\  
 
-2\mu_{2}=0
 
-2\mu_{2}=0
 
\end{matrix}\right.  \Rightarrow \left\{\begin{matrix}
 
\end{matrix}\right.  \Rightarrow \left\{\begin{matrix}
Line 58: Line 183:
 
\mu_{2}=0\\  
 
\mu_{2}=0\\  
 
\mu_{3}=-4
 
\mu_{3}=-4
\end{matrix}\right.</math>
+
\end{matrix}\right.</math>  
  
<math>\therefore x^{*}=\begin{bmatrix}
+
<math>\therefore x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ satisfy FONC for maximum}</math><font color="#aaaaaa"><br></font>
0\\0  
+
 
\end{bmatrix} \text{ satisfy FONC for maximum}</math><math>\therefore x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ satisfy FONC for maximum}</math>
+
----
 +
 
 +
<math>\color{blue}\left( \text{ii} \right) \text{Does } x^{*} \text{ satisfy SOSC? Carefully justify your answer.}</math><br>
 +
 
 +
<math>\color{blue}\text{Solution 1:}</math>
 +
 
 +
<math>L\left ( x^{*},\mu^{*} \right )= \nabla l \left( x^{*},\mu^{*} \right)= \begin{pmatrix}
 +
2&0 \\  
 +
0&2
 +
\end{pmatrix}-2\begin{pmatrix}
 +
2&0 \\
 +
0&0
 +
\end{pmatrix} = \begin{pmatrix}
 +
-2&0 \\
 +
0&2
 +
\end{pmatrix}</math><br>
 +
 
 +
<font color="#ff0000">'''<math>\tilde{T}\left( x^{* }\mu^{*} \right) : \left\{ \begin{matrix} y^{T}\binom{0}{-1} =0 \\ y^{T}\binom{-1}{0} =0 \end{matrix} \right. \Rightarrow \tilde{T}\left( x^{* }\mu^{*} \right)= \left \{ \binom{0}{0} \right \}</math><br>'''</font>
 +
 
 +
SOSC is trivially satisfied.
 +
 
 +
<math>\color{red} \text{This solution misunderstood the range of } y \text{ for SOSC condition } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y\geq 0</math><br>
 +
 
 +
<math>\color{red} y\in \tilde{T}\left( x^{* }\mu^{*} \right) \text{, where } \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y:Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right)  \right \}</math>
 +
 
 +
<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \text{ has constrain for } \mu ^{\ast } \text{, }  \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \}</math>
 +
 
 +
<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \subset 
 +
J\left(x^{*}\right)</math>, &nbsp; &nbsp;<math>\color{red} T\left( x^{* } \right) \subset \tilde{T}\left( x^{* },\mu^{*} \right)</math>
  
 
----
 
----
Line 68: Line 221:
 
<math>\color{blue}\text{Solution 2:}</math>  
 
<math>\color{blue}\text{Solution 2:}</math>  
  
<br>  
+
<font color="#ff0000"><span style="font-size: 17px;">'''<math>L\left ( x_{1},\mu \right )= D^{2} l \left ( x _{1},\mu \right )= \begin{bmatrix} 2+2\mu_{1} & 0 \\ 0 & 2 \end{bmatrix}</math>'''</span></font>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{for point } x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{, we get } \mu_{1}=-2  \text{ from KKT condition.}</math>
 +
 
 +
<font color="#ff0000" size="5">'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\therefore L \left ( x^{*}, \mu ^{*}\right )=\begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix}</math><br>'''</font>
 +
 
 +
<font color="#ff0000"><span style="font-size: 20px;">'''<math>\tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y:Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right)  \right \}</math>'''</span></font>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \}</math>&nbsp; &nbsp; &nbsp;<math>\therefore i= 2</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\therefore \tilde{T}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ y:\left [ 1,1 \right ]y= 0 \right \}= \left \{ y:y_{1}= -y_{2} \right \}</math>
 +
 
 +
<math>y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y=\begin{bmatrix}
 +
y_{1}&
 +
y_{2}
 +
\end{bmatrix}\begin{bmatrix}
 +
-2 & 0\\
 +
0 & 2
 +
\end{bmatrix} \begin{bmatrix}
 +
y_{1}\\
 +
y_{2}
 +
\end{bmatrix} \geqslant 0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>-2y_{1}^{2}+2y_{2}^{2}\geqslant 0\cdots \left ( 1 \right )</math>
 +
 
 +
<span class="texhtml">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; for ''y''<sub>1</sub> = -&nbsp;''y''<sub>2</sub>, &nbsp;(1) is always satisfied.</span>
 +
 
 +
<math>\therefore \text{For all } y\in \tilde{T}\left( x^{* },\mu^{*} \right) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y\geq 0</math>
 +
 
 +
<math>\therefore \text{point } x^{*} \text{satisfy the SOSC}</math><br>  
  
 
----
 
----
 +
----
 +
<math>\color{blue}\text{Related Problem: }</math>
  
Automatic Control (AC)- Question 3, August 2011<br>Problem 1: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion<br>Problem 2: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-2<br>Problem 3: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3<br>Problem 4: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4<br>  
+
<span class="texhtml">''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; minimize'''&nbsp; &nbsp;'''''<b>&nbsp;− ''x''<sub>2</sub> + (''x''<sub>1</sub> − 1)<sup>2</sup> − 2</b></span>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to } x_{1}+x_{2}\leq2</math>
 +
 
 +
<math>\text{KKT condition: 1. } \mu\geq0</math>
 +
 
 +
<font color="#ff0000"><span style="font-size: 17px;">'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{2. } \begin{bmatrix}
 +
2 \left(x_{1}-1 \right) & -1
 +
\end{bmatrix} +\mu \begin{bmatrix}
 +
1 & 1
 +
\end{bmatrix} = \begin{bmatrix}
 +
0 & 0
 +
\end{bmatrix}</math>'''</span></font>
 +
 
 +
<font color="#ff0000">'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{3. } \mu \left( x_{1}+x_{2}-2 \right)=0</math><br>'''</font>
 +
 
 +
<math>\text{From 2, } \mu=1 \text{, and } 2\left ( x_{1}-1 \right )=-1</math><br>
 +
 
 +
<math>\text{From 3, } \left( x_{1}+x_{2} \right) =2</math><font face="serif">''<br>''</font>
 +
 
 +
<math>\text{From above two equations, we obtain a candidate point for the minimizer } x^{*}=\begin{bmatrix}
 +
1/2\\
 +
3/2
 +
\end{bmatrix}</math>
 +
 
 +
<span class="texhtml">Check for SOSC:</span><br>
 +
 
 +
<math>L \left ( x^{*}, \mu ^{*}\right )= F\left ( x^{*}\right )+ \mu ^{*} G\left ( x^{*}\right )=\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}</math>
 +
 
 +
<span class="texhtml">Because μ<sup> * </sup> &gt; 0''&nbsp;'',''w'''e&nbsp;'''h'''a'''v'''e'''''</span>'''''<br> ''' ''
 +
 
 +
<math>\tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: \begin{bmatrix}
 +
1 & 1
 +
\end{bmatrix}y=0  \right \} = \left \{ y: =\begin{bmatrix}
 +
a & -a
 +
\end{bmatrix}:a\in\Re  \right \}</math>
 +
 
 +
<math>\text{Hence } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y=\begin{bmatrix}
 +
a & -a
 +
\end{bmatrix}\begin{bmatrix}
 +
2 & 0\\
 +
0 & 0
 +
\end{bmatrix}\begin{bmatrix}
 +
a \\
 +
-a
 +
\end{bmatrix}=2a^{2}>0</math><br>
 +
 
 +
<math>\therefore x^{*} \text{ satisfies the SOSC for strict local minimizer. }</math>
 +
 
 +
<br>  
  
 
----
 
----
  
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]  
+
Automatic Control (AC)- Question 3, August 2011
 +
 
 +
Go to
 +
 
 +
*Problem 1: [[ECE-QE AC3-2011 solusion-1|solutions and discussions]]
 +
*Problem 2: [[ECE-QE AC3-2011 solusion-2|solutions and discussions]]
 +
*Problem 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]
 +
*Problem 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]
 +
*Problem 5: [[ECE-QE_AC3-2011_solusion-5|solutions and discussions]]
 +
 
 +
----
  
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
+
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 09:11, 13 September 2013


ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, August 2011, Part 5

Part 1,2,3,4,5

 $ \color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the following optimization problem, } $

                            $ \text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

                        $ \text{subject to } x_{2}- x_{1}^{2}\geq0 $

                                                 $ 2-x_{1}-x_{2}\geq0 $

                                                 $ x_{1}\geq0. $

$ \color{blue} \text{The point } x^{*}=\begin{bmatrix} 0 & 0 \end{bmatrix}^{T} \text{ satisfies the KKT conditions.} $


Theorem:

For the problem:    minimize  $ f \left( x \right) $

                             subject to   $ h \left( x \right) =0 $

                                                $ g \left( x \right) \leq 0 $

The KKT condition (FONC) for local minimizer x *  of f is:

      $ \text{1. } \mu^{*}\geq0 $

     $ \text{2. } Df\left ( x^{*} \right )+\lambda ^{*T}Dh\left ( x^{*} \right )+\mu ^{*T}Dg\left ( x^{*} \right )=0^{T} $

        $ \text{3. } \mu ^{*T}g\left ( x^{*} \right )=0 $

        $ \text{4. } h\left ( x^{*} \right )=0 $

        $ \text{5. } g \left( x^{*} \right) \leq0 $

Definision: Regular point              

         $ x^{*} \text{ satisfy } h\left( x^{*} \right)=0, g\left( x^{*} \right)\leq0 \text{ and let } J\left(x^{*}\right)= \left \{ j:g_{j}\left(x^{*}\right)=0 \right \} $

         $ x^{*}\text{ is regular point if } \nabla h_{i} \left( x^{*} \right), \nabla g_{j} \left( x^{*} \right), 1\leq i\leq m, j\in J \left( x^{*} \right) $

SONC: Suppose that x *  is regular
        $ \text{1. } \mu ^{*}\geq0 \text{, } Df\left ( x^{*} \right )+\lambda ^{*T}Dh\left ( x^{*} \right )+\mu ^{*T}Dg\left ( x^{*} \right )=0^{T} \text{, } \mu ^{*T}g\left ( x^{*} \right )=0 $

        $ \text{2. For all } y\in T\left( x^{*} \right ) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast }, \lambda ^{\ast }\right )y\geq 0 $

               $ T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in J\left( x^{*} \right) \right \} $

               $ J\left(x^{*}\right)= \left \{ j:g_{j}\left(x^{*}\right)=0 \right \} $

SOSC: There exist a feasible point xthat 

        $ \text{1. } \mu ^{*}\geq0 \text{, } Df\left ( x^{*} \right )+\lambda ^{*T}Dh\left ( x^{*} \right )+\mu ^{*T}Dg\left ( x^{*} \right )=0^{T} \text{, } \mu ^{*T}g\left ( x^{*} \right )=0 $

        $ \text{2. For all } y\in \tilde{T}\left( x^{* }\mu^{*} \right) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast }, \lambda ^{\ast }\right )y\geq 0 $

               $ \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right \} $

              $ \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \} $

Process:

      a. Write down the KKT condition for this probelm

      b. Find all points (and KKT multipliers) satisfying the KKT condition. In each case, determine if the point is regular.

      c. Find all points in part b that also satisfy the SONC.

      d. Find all points in part c that also satisfy the SOSC.

      e. Find all points in part c that are local minimizers.


$ \color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?} $

$ \color{blue}\text{Solution 1:} $

        $ f\left( x \right) = \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

        $ g_{1}\left( x \right)=x_{1}^{2}-x_{2} $

        $ g_{2}\left( x \right)= x_{1}+x_{2}-2 $

        $ g_{3}\left( x \right)= -x_{1} $

 $ \text{ The problem is to optimize f(x), subject to } g_{1}\leq 0, g_{2}\leq 0, g_{3}\leq 0 $

$ \text{Let } l\left( \mu ,\lambda \right)=\nabla f\left(x \right)+\mu_{1} \nabla g_{1}\left( x \right)+\mu_{2} \nabla g_{2}\left( x \right)+\mu_{3} \nabla g_{3}\left( x \right) $

                      $ =\begin{pmatrix} 2x_{1}-4\\ 2x_{2}-2 \end{pmatrix} +\mu_{1} \begin{pmatrix} 2x_{1}\\ -1 \end{pmatrix}+\mu_{2}+\begin{pmatrix} 1\\ 1 \end{pmatrix}+\mu_{3}+\begin{pmatrix} -1\\ 0 \end{pmatrix} =0 $

$ \mu_{1} g_{1}\left( x \right)+\mu_{2} g_{2}\left( x \right)+\mu_{3} g_{3}\left( x \right) $

            $ = \mu_{1} \left( x_{1}^2-x_{2} \right)+\mu_{2} \left( x_{1}+x_{2}-2 \right)+\mu_{3} \left( -x_{1} \right) =0 $

$ \text{Let } x^{*}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{, } $

            $ \left\{\begin{matrix} \nabla l\left( x,\mu \right)=\begin{pmatrix} -4+\mu_{2}-\mu_{3}\\ -2-\mu_{1}-\mu_{2} \end{pmatrix}= \begin{pmatrix} 0 \\ 0\end{pmatrix} \\ -2\mu_{2}=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_{1}=-2\\ \mu_{2}=0\\ \mu_{3}=-4 \end{matrix}\right. $

$ \text{As } \mu^{*}\leq 0, x^{*}\begin{bmatrix} 0\\0 \end{bmatrix} \text{satisfies the FONC for maximum.} $


$ \color{blue}\text{Solution 2:} $

$ \text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

                                  $ \text{subject to } g_{1}\left( x \right)= x_{1}^{2}-x_{2}\leq0 $

                                                           $ g_{2}\left( x \right)= x_{1}+x_{2}-2\leq0 $

                                                           $ g_{3}\left( x \right)= -x_{1}\leq0 $

$ \text{KKT condition: (1) } Dl\left( \mu ,\lambda \right)=Df\left(x \right)+\mu_{1}Dg_{1}\left( x \right)+\mu_{2}Dg_{2}\left( x \right)+\mu_{3}Dg_{3}\left( x \right) $

                                             $ =\left [ 2x_{1}-4+2\mu_{1}x_{1}+\mu_{2}-\mu_{3}, 2x_{2}-2-\mu_{1}+\mu_{2} \right ]=0 $                                            $ \left ( 2 \right ) \mu^{T}g\left ( x \right )=0 \Rightarrow \mu_{1}\left ( x_{1}^2-x_{2} \right )+\mu_{2}\left ( x_{1}+x_{2}-2 \right ) - \mu_{3}x_{1}=0 $

                                 $ \left ( 3 \right ) \mu_{1},\mu_{2},\mu_{3}\geq 0 \text{ for minimizer} $

                                        $ \mu_{1},\mu_{2},\mu_{3}\leq 0 \text{ for maximizer} $

                                        $ \text{where } \mu^{*}=\begin{bmatrix} \mu_{1}\\ \mu_{2}\\ \mu_{3} \end{bmatrix} \text{ are the KKT multiplier.} $

$ \text{For } x^{*}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{, } $       $ \left\{\begin{matrix} \nabla l\left( x,\mu \right)=\begin{pmatrix} -4+\mu_{2}-\mu_{3}\\ -2-\mu_{1}+\mu_{2} \end{pmatrix}=\begin{pmatrix} 0\\0 \end{pmatrix}\\ -2\mu_{2}=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_{1}=-2\\ \mu_{2}=0\\ \mu_{3}=-4 \end{matrix}\right. $

$ \therefore x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ satisfy FONC for maximum} $


$ \color{blue}\left( \text{ii} \right) \text{Does } x^{*} \text{ satisfy SOSC? Carefully justify your answer.} $

$ \color{blue}\text{Solution 1:} $

$ L\left ( x^{*},\mu^{*} \right )= \nabla l \left( x^{*},\mu^{*} \right)= \begin{pmatrix} 2&0 \\ 0&2 \end{pmatrix}-2\begin{pmatrix} 2&0 \\ 0&0 \end{pmatrix} = \begin{pmatrix} -2&0 \\ 0&2 \end{pmatrix} $

$ \tilde{T}\left( x^{* }\mu^{*} \right) : \left\{ \begin{matrix} y^{T}\binom{0}{-1} =0 \\ y^{T}\binom{-1}{0} =0 \end{matrix} \right. \Rightarrow \tilde{T}\left( x^{* }\mu^{*} \right)= \left \{ \binom{0}{0} \right \} $

SOSC is trivially satisfied.

$ \color{red} \text{This solution misunderstood the range of } y \text{ for SOSC condition } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y\geq 0 $

$ \color{red} y\in \tilde{T}\left( x^{* }\mu^{*} \right) \text{, where } \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y:Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right \} $

$ \color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \text{ has constrain for } \mu ^{\ast } \text{, } \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \} $

$ \color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \subset J\left(x^{*}\right) $,    $ \color{red} T\left( x^{* } \right) \subset \tilde{T}\left( x^{* },\mu^{*} \right) $


$ \color{blue}\text{Solution 2:} $

$ L\left ( x_{1},\mu \right )= D^{2} l \left ( x _{1},\mu \right )= \begin{bmatrix} 2+2\mu_{1} & 0 \\ 0 & 2 \end{bmatrix} $

                   $ \text{for point } x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{, we get } \mu_{1}=-2 \text{ from KKT condition.} $

           $ \therefore L \left ( x^{*}, \mu ^{*}\right )=\begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix} $

$ \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y:Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right \} $

             $ \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \} $     $ \therefore i= 2 $

             $ \therefore \tilde{T}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ y:\left [ 1,1 \right ]y= 0 \right \}= \left \{ y:y_{1}= -y_{2} \right \} $

$ y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y=\begin{bmatrix} y_{1}& y_{2} \end{bmatrix}\begin{bmatrix} -2 & 0\\ 0 & 2 \end{bmatrix} \begin{bmatrix} y_{1}\\ y_{2} \end{bmatrix} \geqslant 0 $

                    $ -2y_{1}^{2}+2y_{2}^{2}\geqslant 0\cdots \left ( 1 \right ) $

                    for y1 = - y2,  (1) is always satisfied.

$ \therefore \text{For all } y\in \tilde{T}\left( x^{* },\mu^{*} \right) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y\geq 0 $

$ \therefore \text{point } x^{*} \text{satisfy the SOSC} $



$ \color{blue}\text{Related Problem: } $

                  minimize    − x2 + (x1 − 1)2 − 2

                  $ \text{subject to } x_{1}+x_{2}\leq2 $

$ \text{KKT condition: 1. } \mu\geq0 $

                                $ \text{2. } \begin{bmatrix} 2 \left(x_{1}-1 \right) & -1 \end{bmatrix} +\mu \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} $

                                        $ \text{3. } \mu \left( x_{1}+x_{2}-2 \right)=0 $

$ \text{From 2, } \mu=1 \text{, and } 2\left ( x_{1}-1 \right )=-1 $

$ \text{From 3, } \left( x_{1}+x_{2} \right) =2 $

$ \text{From above two equations, we obtain a candidate point for the minimizer } x^{*}=\begin{bmatrix} 1/2\\ 3/2 \end{bmatrix} $

Check for SOSC:

$ L \left ( x^{*}, \mu ^{*}\right )= F\left ( x^{*}\right )+ \mu ^{*} G\left ( x^{*}\right )=\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} $

Because μ * > 0 ,whave

$ \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: \begin{bmatrix} 1 & 1 \end{bmatrix}y=0 \right \} = \left \{ y: =\begin{bmatrix} a & -a \end{bmatrix}:a\in\Re \right \} $

$ \text{Hence } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y=\begin{bmatrix} a & -a \end{bmatrix}\begin{bmatrix} 2 & 0\\ 0 & 0 \end{bmatrix}\begin{bmatrix} a \\ -a \end{bmatrix}=2a^{2}>0 $

$ \therefore x^{*} \text{ satisfies the SOSC for strict local minimizer. } $



Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett