(16 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<br>
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:automatic control]]
 +
[[Category:optimization]]
 +
 
 +
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC)  =
 +
 
 +
=  [[ECE-QE_AC3-2011|Question 3, August 2011]], Part 2  =
  
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]]: Automatic Control (AC)- Question 3, August 2011 =
+
:[[ECE-QE AC3-2011 solusion-1|Part 1]],[[ECE-QE_AC3-2011_solusion-2|2]],[[ECE-QE AC3-2011 solusion-3|3]],[[ECE-QE AC3-2011 solusion-4|4]],[[ECE-QE AC3-2011 solusion-5|5]]
  
 
----
 
----
Line 11: Line 20:
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}+x_{2}\leq6</math>''' &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}+x_{2}\leq6</math>''' &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},-x_{2}\geq0.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},x_{2}\geq0.</math>  
  
===== <math>\color{blue}\text{Solution 1:}</math> =====
+
----
 +
 
 +
'''Theorem:&nbsp;'''
 +
 
 +
A basic feasible solution is optimal if and only if the corresponding reduced cost coefficeints are all nonnegative.
 +
 
 +
'''Simplex Method:'''
 +
 
 +
1. Transform the given problem into standard form by introducing slack variables&nbsp;<span class="texhtml">''x''<sub>3</sub></span>&nbsp;and&nbsp;<span class="texhtml">''x''<sub>4</sub></span>.<span class="texhtml"><sub></sub></span>
 +
 
 +
2. Form a canonical augmented matrix corresponding to an initial basic feasible solution.
 +
 
 +
3. Calculate the reduced cost coefficients corresponding to the nonbasic variables.
 +
 
 +
4. If&nbsp;<math>r_{j}>\geq0</math>&nbsp;for all&nbsp;<span class="texhtml">''j''</span>, stop. -- the current basic feasible solution is optimal.
 +
 
 +
5. Select a&nbsp;<span class="texhtml">''q''</span>&nbsp;such that&nbsp;<span class="texhtml">''r''<sub>''q''</sub> &lt; 0</span>
 +
 
 +
6. If no&nbsp;<span class="texhtml">''y''<sub>''iq''</sub> &gt; 0</span>, stop. -- the problem is unbounded; else, calculate&nbsp;'''&nbsp;<math>p=argmin_{i}\left \{ y_{i0}/y_{iq}:y_{iq}>0 \right \}</math>.&nbsp; '''
 +
 
 +
7. Update the canonical augmented matrix by pivoting about the&nbsp;<span class="texhtml">(''p'',''q'')</span>&nbsp;th element.
 +
 
 +
8. Go to step 3.
 +
 
 +
----
 +
 
 +
<math>\color{blue}\text{Solution 1:}</math>  
  
<span class="texhtml">&nbsp; &nbsp;min&nbsp;''&nbsp;&nbsp;'' − ''x''<sub>1</sub> − ''x''<sub>2</sub></span>&nbsp;<br> <span class="texhtml">&nbsp; &nbsp;subject to &nbsp; &nbsp;''x''<sub>1</sub> − ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span>&nbsp;<br> <span class="texhtml">''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 6</span>&nbsp;  
+
<span class="texhtml">&nbsp; &nbsp;min&nbsp;''&nbsp;&nbsp;'' − ''x''<sub>1</sub> − ''x''<sub>2</sub></span>&nbsp;<br> <span class="texhtml">&nbsp; &nbsp;subject to &nbsp; &nbsp;''x''<sub>1</sub> − ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span>&nbsp;<br> <span class="texhtml">''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 6</span>&nbsp;  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x_{1},x_{2},x_{3},x_{4}\geq 0</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},x_{2},x_{3},x_{4}\geq 0</math>  
  
 
<math>\begin{matrix}
 
<math>\begin{matrix}
Line 37: Line 72:
 
\end{matrix}</math>  
 
\end{matrix}</math>  
  
<math>\Rightarrow x_{1}=4, x_{2}=2, \text{the maximum value } x_{1}+x_{2}=6</math><br>  
+
<math>\Rightarrow x_{1}=4, x_{2}=2, \text{the maximum value } x_{1}+x_{2}=6</math>  
  
 
----
 
----
  
===== <math>\color{blue}\text{Solution 2:}</math> =====
+
<math>\color{blue}\text{Solution 2:}</math>  
  
 
<span class="texhtml">Get standard form for simplex method &nbsp; min&nbsp;''&nbsp;&nbsp;'' − ''x''<sub>1</sub> − ''x''<sub>2</sub></span>  
 
<span class="texhtml">Get standard form for simplex method &nbsp; min&nbsp;''&nbsp;&nbsp;'' − ''x''<sub>1</sub> − ''x''<sub>2</sub></span>  
Line 52: Line 87:
  
 
<math>\begin{matrix}
 
<math>\begin{matrix}
  & a_{1} & a_{2} & a_{3} & a_{4} & b\\  
+
  & x_{1} & x_{2} & x_{3} & x_{4} & b\\  
 
  & 1 & -1 & 1 & 0 & 2\\  
 
  & 1 & -1 & 1 & 0 & 2\\  
 
  & 1 & 1 & 0 & 1 & 6 \\  
 
  & 1 & 1 & 0 & 1 & 6 \\  
Line 77: Line 112:
 
<math>\therefore \text{the optimal solution to the original problem is } x^{*}=  \begin{bmatrix} 4\\ 2 \end{bmatrix}</math><font face="serif" color="#ff0000" style="font-size: 17px;">'''<br>'''</font>  
 
<math>\therefore \text{the optimal solution to the original problem is } x^{*}=  \begin{bmatrix} 4\\ 2 \end{bmatrix}</math><font face="serif" color="#ff0000" style="font-size: 17px;">'''<br>'''</font>  
  
The maximum value for &nbsp;<font face="serif"><span class="texhtml">&nbsp;''x''<sub>1</sub> + ''x''<sub>2</sub> is 6</span><br></font>  
+
The maximum value for &nbsp;<font face="serif"><span class="texhtml">&nbsp;''x''<sub>1</sub> + ''x''<sub>2</sub> is 6.</span><br></font>  
  
 
----
 
----
 +
----
 +
<math>\color{blue}\text{Related Problem: Solve the following problem using simplex method}</math>
  
Automatic Control (AC)- Question 3, August 2011<br>Problem 1: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion<br>Problem 3: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3<br>Problem 4: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4<br>Problem 5: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-5<br>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; max &nbsp;<span class="texhtml">2''x''<sub>1</sub> + 3''x''<sub>2</sub></span>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; subject to &nbsp;<math>2x_{1}+x_{2}\leq4</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}+x_{2}\leq3</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},x_{2}\geq0.</math>
 +
 
 +
<math>\color{blue}\text{Solution:}</math>
 +
 
 +
Transform to standard form: &nbsp;min &nbsp;<span class="texhtml"> − 2''x''<sub>1</sub> − 3''x''<sub>2</sub></span>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;subject to &nbsp;&nbsp;<span class="texhtml">2''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>3</sub> = 4</span>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<span class="texhtml">''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 3</span>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{i}\geq0,    i=1,2,3,4</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\begin{matrix}
 +
& x_{1} & x_{2} & x_{3} & x_{4} & b\\
 +
& 2 & 1 & 1 & 0 & 4\\
 +
& 1 & 1 & 0 & 1 & 3 \\
 +
c^{T} & -2 & -3 & 0 & 0 & 0
 +
\end{matrix}</math>  
 +
 
 +
We have&nbsp;<span class="texhtml">''r''<sub>1</sub> =  − 2 &lt; 0</span>&nbsp; and &nbsp;<span class="texhtml">''r''<sub>2</sub> =  − 3 &lt; 0</span>. &nbsp;We introduce&nbsp;<span class="texhtml">''a''<sub>2</sub></span>&nbsp;into the new basis and pivot&nbsp;<span class="texhtml">''y''<sub>22</sub></span>, by calculating the ratios&nbsp;<span class="texhtml">''y''<sub>''i''0</sub> / ''y''<sub>''i''2</sub>,''y''<sub>''i''2</sub> &gt; 0</span>.<sub></sub>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{matrix}
 +
& x_{1} & x_{2} & x_{3} & x_{4} & b\\
 +
& 2 & 1 & 1 & 0 & 4\\
 +
& 1 & 1 & 0 & 1 & 3 \\
 +
c^{T} & 1 & 0 & 0 & 3 & 9
 +
\end{matrix} \Rightarrow
 +
\begin{matrix}
 +
& x_{1} & x_{2} & x_{3} & x_{4} & b\\
 +
& 1 & 0 & 1 & -1 & 1\\
 +
& 1 & 1 & 0 & 1 & 3 \\
 +
c^{T} & 1 & 0 & 0 & 3 & 9
 +
\end{matrix}</math>
 +
 
 +
All the reduced cost coefficients are positive, hence the optimal solution to the problem in standard form is
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>x^{*}=\begin{bmatrix}
 +
0 &
 +
3 &
 +
1 &
 +
0
 +
\end{bmatrix}^{T}.</math>
 +
 
 +
The optimal solution to the original problem is&nbsp;<math>x^{*}=\begin{bmatrix}
 +
0 &
 +
3
 +
\end{bmatrix}^{T}.</math>&nbsp;and the optimal objective value is 9.<br>
 +
 
 +
<br>  
  
 
----
 
----
  
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]  
+
Automatic Control (AC)- Question 3, August 2011
 +
 
 +
Go to
 +
 
 +
*Part 1: [[ECE-QE AC3-2011 solusion-1|solutions and discussions]]
 +
*Part 2: [[ECE-QE_AC3-2011_solusion-2|solutions and discussions]]
 +
*Part 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]
 +
*Part 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]
 +
*Part 5: [[ECE-QE AC3-2011 solusion-5|solutions and discussions]]
 +
 
 +
----
  
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
+
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 09:10, 13 September 2013


ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, August 2011, Part 2

Part 1,2,3,4,5

 $ \color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, } $

               maximize        x1 + x2

               $ \text{subject to } x_{1}-x_{2}\leq2 $
                                        $ x_{1}+x_{2}\leq6 $                                         

                                        $ x_{1},x_{2}\geq0. $


Theorem: 

A basic feasible solution is optimal if and only if the corresponding reduced cost coefficeints are all nonnegative.

Simplex Method:

1. Transform the given problem into standard form by introducing slack variables x3 and x4.

2. Form a canonical augmented matrix corresponding to an initial basic feasible solution.

3. Calculate the reduced cost coefficients corresponding to the nonbasic variables.

4. If $ r_{j}>\geq0 $ for all j, stop. -- the current basic feasible solution is optimal.

5. Select a q such that rq < 0

6. If no yiq > 0, stop. -- the problem is unbounded; else, calculate  $ p=argmin_{i}\left \{ y_{i0}/y_{iq}:y_{iq}>0 \right \} $

7. Update the canonical augmented matrix by pivoting about the (p,q) th element.

8. Go to step 3.


$ \color{blue}\text{Solution 1:} $

   min   x1x2 
   subject to    x1x2 + x3 = 2 
                      x1 + x2 + x4 = 6 

                      $ x_{1},x_{2},x_{3},x_{4}\geq 0 $

$ \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ -1 & -1 & 0 & 0 & 0 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & -2 & 1 & 0 & 2 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \Rightarrow x_{1}=4, x_{2}=2, \text{the maximum value } x_{1}+x_{2}=6 $


$ \color{blue}\text{Solution 2:} $

Get standard form for simplex method   min   x1x2

                                                           subject to    x1x2 + x3 = 2

                                                                             x1 + x2 + x4 = 6

                                                                             $ x_{i}\geq0, i=1,2,3,4 $

$ \begin{matrix} & x_{1} & x_{2} & x_{3} & x_{4} & b\\ & 1 & -1 & 1 & 0 & 2\\ & 1 & 1 & 0 & 1 & 6 \\ c^{T} & -1 & -1 & 0 & 0 & 0 \end{matrix} $      $ \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \therefore \text{the optimal solution to the original problem is } x^{*}= \begin{bmatrix} 4\\ 2 \end{bmatrix} $

The maximum value for   x1 + x2 is 6.



$ \color{blue}\text{Related Problem: Solve the following problem using simplex method} $

                      max  2x1 + 3x2

            subject to  $ 2x_{1}+x_{2}\leq4 $

                              $ x_{1}+x_{2}\leq3 $

                              $ x_{1},x_{2}\geq0. $

$ \color{blue}\text{Solution:} $

Transform to standard form:  min   − 2x1 − 3x2

                                       subject to   2x1 + x2 + x3 = 4

                                                          x1 + x2 + x4 = 3

                                                          $ x_{i}\geq0, i=1,2,3,4 $

              $ \begin{matrix} & x_{1} & x_{2} & x_{3} & x_{4} & b\\ & 2 & 1 & 1 & 0 & 4\\ & 1 & 1 & 0 & 1 & 3 \\ c^{T} & -2 & -3 & 0 & 0 & 0 \end{matrix} $

We have r1 = − 2 < 0  and  r2 = − 3 < 0.  We introduce a2 into the new basis and pivot y22, by calculating the ratios yi0 / yi2,yi2 > 0.

               $ \begin{matrix} & x_{1} & x_{2} & x_{3} & x_{4} & b\\ & 2 & 1 & 1 & 0 & 4\\ & 1 & 1 & 0 & 1 & 3 \\ c^{T} & 1 & 0 & 0 & 3 & 9 \end{matrix} \Rightarrow \begin{matrix} & x_{1} & x_{2} & x_{3} & x_{4} & b\\ & 1 & 0 & 1 & -1 & 1\\ & 1 & 1 & 0 & 1 & 3 \\ c^{T} & 1 & 0 & 0 & 3 & 9 \end{matrix} $

All the reduced cost coefficients are positive, hence the optimal solution to the problem in standard form is

               $ x^{*}=\begin{bmatrix} 0 & 3 & 1 & 0 \end{bmatrix}^{T}. $

The optimal solution to the original problem is $ x^{*}=\begin{bmatrix} 0 & 3 \end{bmatrix}^{T}. $ and the optimal objective value is 9.



Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang