(58 intermediate revisions by 2 users not shown)
Line 1: Line 1:
= ECE QE AC-3 August 2011 Solusion  =
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:automatic control]]
 +
[[Category:optimization]]
  
===== 1. (20 pts) Consider the optimization problem, =====
+
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC)  =
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; maximize &nbsp;&nbsp;<math>-x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math>
+
= [[ECE-QE_AC3-2011|Question 3, August 2011]], Part 1 =
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; subject to &nbsp;&nbsp;<math>x_{1}\geq0, x_{2}\geq0</math>
+
:[[ECE-QE_AC3-2011_solusion-1|Part 1]],[[ECE-QE AC3-2011 solusion-2|2]],[[ECE-QE AC3-2011 solusion-3|3]],[[ECE-QE AC3-2011 solusion-4|4]],[[ECE-QE AC3-2011 solusion-5|5]]
  
===== (i) Characterize feasible directions at the point &nbsp;<math>x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>  =====
+
----
  
<math>d\in\Re_{2}, d\neq0 \textmd{is a feasible direction at}</math>&nbsp;is a feasible direction at&nbsp;<span class="texhtml">''x''<sup> * </sup></span>, if &nbsp;<math>\exists\alpha_{0}</math>&nbsp; that &nbsp;<math>\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \in\Omega \right]</math>&nbsp; for all&nbsp;<math>0\leq\alpha\leq\alpha_{0}</math><br>  
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, }</math></span></font>  
  
&nbsp;<math>\because x_{1}\geq0, x_{2}\geq0</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math>  
  
<math>\therefore d=
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }   x_{1}\geq0, x_{2}\geq0</math><font color="#ff0000" face="serif" size="4"><br></font>  
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re_{2}, d_{2}\neq0</math><br>  
+
  
===== (ii) Write down the second-order necessary condition for . Does the point satisfy this condition? =====
+
----
 +
 
 +
'''Definition: Feasible Direction'''
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{A vector } d\in\Re^{n}, d\neq0, \text{ is a feasible direction at } x\in\Omega</math><br>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{if there exists } \alpha_{0}>0 \text{ such that } x+\alpha d\in\Omega \text{ for all } \alpha\in\left[ 0,\alpha_{0}\right]</math>
 +
 
 +
'''FONC:'''
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; If x<span style="font-size: 11px;">*</span>&nbsp;is a local minimizer of f over <span class="texhtml">Ω</span>, then for any feasible direction d at x*, we have&nbsp;<sup></sup><sup></sup>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>d^{T} \nabla f\left ( x^{*} \right )\geq0</math>
 +
 
 +
'''FONC Interior Case:'''
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\nabla f\left ( x^{*} \right )=0</math>
 +
 
 +
'''SONC:&nbsp;'''
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; Let x* a local minimizer of f and d a feasible direction at x*,
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; If <math>d^{T} \nabla f\left ( x^{*} \right )=0</math>&nbsp;, then &nbsp;<math>d^{T} F\left ( x^{*} \right )d\geq 0</math>
 +
 
 +
'''SONC Interior Case:&nbsp;'''
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; If&nbsp;<math>\nabla f\left ( x^{*} \right )=0</math>&nbsp; , then&nbsp;<math>d^{T} F\left ( x^{*} \right )d\geq 0</math>
 +
 
 +
----
 +
 
 +
'''<math>\color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>'''<br>
 +
 
 +
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 +
 
 +
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math>&nbsp;
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in \left[0,\alpha_{0}\right]</math><br>
 +
 
 +
<math>\text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re, \text{ and } y\geq0.</math>
 +
 
 +
----
 +
 
 +
<math>\color{blue}\text{Solution 2:}</math>
 +
 
 +
<math>d\in\Re^{2}, d\neq0 \text{ is a feasible direction at } x^{*}</math>&nbsp;<br>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{ if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>
 +
 
 +
'''<math>\because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>'''
 +
 
 +
<br> <math>\therefore d=
 +
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re, d_{2}\geq0</math>
 +
 
 +
----
 +
 
 +
<math>\color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?}</math><br>
 +
 
 +
<math>\color{blue}\text{Solution 1:}</math>
 +
 
 +
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>\text{Let } f\left(x\right)=x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} \text{ , } g_{1}\left(x\right)=-x_{1} \text{ , } g_{2}\left(x\right)=-x_{2}</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 +
</span></font>
 +
 
 +
'''<font face="serif"><math>\text{It is equivalent to minimize } f\left(x\right) \text{,  }</math>&nbsp;&nbsp;</font>'''
 +
 
 +
'''<font face="serif"></font>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{  subject to } g_{1}(x)\leq0, g_{2}(x)\leq0</math>'''
 +
 
 +
<font color="#ff0000" style="font-size: 17px;">'''<math>\left\{\begin{matrix}
 +
l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x) \\ =\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0\\
 +
-\mu_{1}x_{1}-\mu_{2}x_{2} = 0 \\
 +
x_{1} = \frac{1}{2},x_{2} = 0
 +
\end{matrix}\right.</math>'''</font><br><math>\Rightarrow \mu_{1}=0 , \mu_{2}=3/2</math>&nbsp; &nbsp;
 +
 
 +
<math>\therefore x^{*} \text{ satisfies FONC}</math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
 +
 
 +
<math>\color{green} \text{There exist } \mu \text{ which make point } x^{*} \text{ satisfies FONC.}</math>
 +
 
 +
<math>\text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x^{*},\mu^{*})=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right)</math>
 +
 
 +
<font color="#ff0000">'''<math>T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} : \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right)</math><br>'''</font>
 +
 
 +
<math>\color{green} \text {Here not using formal set expression. }</math>&nbsp;&nbsp;<math>\color{red} T\left( x^{* },\mu^{* } \right) \text{ should be } T\left( x^{* } \right)</math>
 +
 
 +
<math>\text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0</math>
 +
 
 +
<math>y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.}</math><br>
 +
 
 +
<math>\color{red} \text{For SONC, } T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in J\left( x^{*} \right)  \right \}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\color{red}  J\left(x^{*}\right)= \left \{  j:g_{j}\left(x^{*}\right)=0 \right \}</math>
 +
 
 +
<math>\color{red} \text{For SOSC, }  \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right)  \right \}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \}</math><br>
 +
 
 +
<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \subset 
 +
J\left(x^{*}\right)</math>, &nbsp; &nbsp;&nbsp;<math>\color{red} T\left( x^{* } \right) \subset \tilde{T}\left( x^{* },\mu^{*} \right)</math>
 +
 
 +
----
 +
 
 +
<math>\color{blue}\text{Solution 2:}</math><br>
 +
 
 +
<math>\text{The problem is equivalent to  min} f\left(x_{1},x_{2}\right) = x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2}</math>&nbsp;&nbsp;
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  x_{1}\leq0, x_{2}\leq0</math>
 +
 
 +
<math>Df\left ( x \right )=\left ( \nabla f\left ( x \right ) \right )^{T} = \left [ \frac{\partial f}{\partial x_{1}}\left ( x \right ),\frac{\partial f}{\partial x_{2}}\left ( x \right ) \right ]=\left [ 2x_{1}-1+x_{2},1+x_{1} \right ]</math><br>
 +
 
 +
<math>F\left ( x \right ) =D^{2}f\left ( x \right )=\begin{bmatrix}
 +
\frac{\partial^{2} f}{\partial x_{1}^{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}}\left ( x \right )\\
 +
\frac{\partial^{2} f}{\partial x_{1}\partial x_{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}^{2}}\left ( x \right )
 +
\end{bmatrix}=\left [ \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right ]</math>
 +
 
 +
<math>\text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>d^{T} \nabla f\left ( x^{*} \right )=0  \cdots \left ( 1 \right )</math>&nbsp; &nbsp; &nbsp;
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>d^{T} F\left ( x^{*} \right )d\geq 0  \cdots \left ( 2\right )</math><br>
 +
 
 +
<math>\text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow  d_{1}\in\Re, d_{2}=0</math><br>
 +
 
 +
<math>\text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0</math>&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{green}  A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0</math><br>
 +
 
 +
<math>\therefore \text{ for all } d\in\Re^{n}, d^{T}F\left ( x^{*} \right )d\geq 0</math>
 +
 
 +
<font face="serif"><math>\text{The point } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} \text{ satisfies SONC for local minimizer.}</math><br></font>
 +
 
 +
----
 +
----
 +
<font face="serif"></font><math>\color{blue}\text{Related Problem: For function }</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>f\left( x_{1},x_{2}  \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2}</math>
 +
 
 +
<math>\color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.}</math>
 +
 
 +
<math>\color{blue}\text{Solution:}</math>
 +
 
 +
<math>\text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix}
 +
x_{1}^{2}-x_{2}\\
 +
x_{2}^{2}-x_{1}
 +
\end{bmatrix}=0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix}
 +
0\\
 +
0
 +
\end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix}
 +
1\\
 +
1
 +
\end{bmatrix}</math>
 +
 
 +
<math>\text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix}
 +
2x_{1} & -1\\
 +
-1 & 2x_{2}
 +
\end{bmatrix}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix}
 +
0 & -1\\
 +
-1 & 0
 +
\end{bmatrix} \text{ is indefinite. The point is not a minimizer.}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix}
 +
0 & -1\\
 +
-1 & 0
 +
\end{bmatrix} \text{ is positive definite. }</math>
 +
 
 +
<math>\therefore x^{\left ( 2 \right )}=\begin{bmatrix}
 +
1\\
 +
1
 +
\end{bmatrix} \text{ satisfies SOSC to be a strict local minimizer.}</math>
 +
 
 +
----
 +
 
 +
Automatic Control (AC)- Question 3, August 2011
 +
 
 +
Go to
 +
 
 +
*Part 1: [[ECE-QE_AC3-2011_solusion-1|solutions and discussions]]
 +
*Part 2: [[ECE-QE AC3-2011 solusion-2|solutions and discussions]]
 +
*Part 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]
 +
*Part 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]
 +
*Part 5: [[ECE-QE AC3-2011 solusion-5|solutions and discussions]]
 +
 
 +
----
 +
 
 +
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 09:09, 13 September 2013


ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, August 2011, Part 1

Part 1,2,3,4,5

 $ \color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $

               $ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

               $ \text{subject to } x_{1}\geq0, x_{2}\geq0 $


Definition: Feasible Direction

        $ \text{A vector } d\in\Re^{n}, d\neq0, \text{ is a feasible direction at } x\in\Omega $

        $ \text{if there exists } \alpha_{0}>0 \text{ such that } x+\alpha d\in\Omega \text{ for all } \alpha\in\left[ 0,\alpha_{0}\right] $

FONC:

        If x* is a local minimizer of f over Ω, then for any feasible direction d at x*, we have 

        $ d^{T} \nabla f\left ( x^{*} \right )\geq0 $

FONC Interior Case:

         $ \nabla f\left ( x^{*} \right )=0 $

SONC: 

        Let x* a local minimizer of f and d a feasible direction at x*,

        If $ d^{T} \nabla f\left ( x^{*} \right )=0 $ , then  $ d^{T} F\left ( x^{*} \right )d\geq 0 $

SONC Interior Case: 

        If $ \nabla f\left ( x^{*} \right )=0 $  , then $ d^{T} F\left ( x^{*} \right )d\geq 0 $


$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

$ \color{blue}\text{Solution 1:} $

$ \text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0, $ 

         $ \left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in \left[0,\alpha_{0}\right] $

$ \text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re, \text{ and } y\geq0. $


$ \color{blue}\text{Solution 2:} $

$ d\in\Re^{2}, d\neq0 \text{ is a feasible direction at } x^{*} $ 

         $ \text{ if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $

$ \because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $


$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re, d_{2}\geq0 $


$ \color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $

$ \color{blue}\text{Solution 1:} $

$ \text{Let } f\left(x\right)=x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} \text{ , } g_{1}\left(x\right)=-x_{1} \text{ , } g_{2}\left(x\right)=-x_{2} $

$ \text{It is equivalent to minimize } f\left(x\right) \text{, } $  

                                           $ \text{ subject to } g_{1}(x)\leq0, g_{2}(x)\leq0 $

$ \left\{\begin{matrix} l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x) \\ =\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0\\ -\mu_{1}x_{1}-\mu_{2}x_{2} = 0 \\ x_{1} = \frac{1}{2},x_{2} = 0 \end{matrix}\right. $
$ \Rightarrow \mu_{1}=0 , \mu_{2}=3/2 $   

$ \therefore x^{*} \text{ satisfies FONC} $              

$ \color{green} \text{There exist } \mu \text{ which make point } x^{*} \text{ satisfies FONC.} $

$ \text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x^{*},\mu^{*})=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right) $

$ T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} : \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right) $

$ \color{green} \text {Here not using formal set expression. } $  $ \color{red} T\left( x^{* },\mu^{* } \right) \text{ should be } T\left( x^{* } \right) $

$ \text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0 $

$ y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.} $

$ \color{red} \text{For SONC, } T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in J\left( x^{*} \right) \right \} $

                           $ \color{red} J\left(x^{*}\right)= \left \{ j:g_{j}\left(x^{*}\right)=0 \right \} $

$ \color{red} \text{For SOSC, } \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right \} $

                          $ \color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \} $

$ \color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \subset J\left(x^{*}\right) $,     $ \color{red} T\left( x^{* } \right) \subset \tilde{T}\left( x^{* },\mu^{*} \right) $


$ \color{blue}\text{Solution 2:} $

$ \text{The problem is equivalent to min} f\left(x_{1},x_{2}\right) = x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} $  

                                                                      $ \text{subject to } x_{1}\leq0, x_{2}\leq0 $

$ Df\left ( x \right )=\left ( \nabla f\left ( x \right ) \right )^{T} = \left [ \frac{\partial f}{\partial x_{1}}\left ( x \right ),\frac{\partial f}{\partial x_{2}}\left ( x \right ) \right ]=\left [ 2x_{1}-1+x_{2},1+x_{1} \right ] $

$ F\left ( x \right ) =D^{2}f\left ( x \right )=\begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}}\left ( x \right )\\ \frac{\partial^{2} f}{\partial x_{1}\partial x_{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}^{2}}\left ( x \right ) \end{bmatrix}=\left [ \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right ] $

$ \text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} $

                  $ d^{T} \nabla f\left ( x^{*} \right )=0 \cdots \left ( 1 \right ) $     

                  $ d^{T} F\left ( x^{*} \right )d\geq 0 \cdots \left ( 2\right ) $

$ \text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow d_{1}\in\Re, d_{2}=0 $

$ \text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0 $       $ \color{green} A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0 $

$ \therefore \text{ for all } d\in\Re^{n}, d^{T}F\left ( x^{*} \right )d\geq 0 $

$ \text{The point } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} \text{ satisfies SONC for local minimizer.} $



$ \color{blue}\text{Related Problem: For function } $

        $ f\left( x_{1},x_{2} \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2} $

$ \color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.} $

$ \color{blue}\text{Solution:} $

$ \text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix} x_{1}^{2}-x_{2}\\ x_{2}^{2}-x_{1} \end{bmatrix}=0 $

        $ \Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix} 1\\ 1 \end{bmatrix} $

$ \text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix} 2x_{1} & -1\\ -1 & 2x_{2} \end{bmatrix} $

        $ \text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is indefinite. The point is not a minimizer.} $

        $ \text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is positive definite. } $

$ \therefore x^{\left ( 2 \right )}=\begin{bmatrix} 1\\ 1 \end{bmatrix} \text{ satisfies SOSC to be a strict local minimizer.} $


Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang