Line 3: | Line 3: | ||
[[Category:CNSIP]] | [[Category:CNSIP]] | ||
[[Category:problem solving]] | [[Category:problem solving]] | ||
− | [[Category: | + | [[Category:random variables]] |
+ | [[Category:probability]] | ||
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS), Question 1, August 2011= | = [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS), Question 1, August 2011= |
Revision as of 09:05, 13 September 2013
ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS), Question 1, August 2011
Question
Part 1. 25 pts
$ \color{blue}\text{ Let } \mathbf{X}\text{, }\mathbf{Y}\text{, and } \mathbf{Z} \text{ be three jointly distributed random variables with joint pdf } f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) $
$ \color{blue}\left( \text{a} \right) \text{Find the joint probability density function } f_{YZ}(y,z). $
$ \color{blue}\left( \text{b} \right) \text{Find } f_{x}\left( x|y,z\right ). $
$ \color{blue}\left( \text{c} \right) \text{Find } f_{Z}\left( z\right ). $
$ \color{blue}\left( \text{d} \right) \text{Find } f_{Y}\left(y|z \right ). $
$ \color{blue}\left( \text{e} \right) \text{Find } f_{XY}\left(x,y|z \right ). $
- Click here to view student answers and discussions
Part 2. 25 pts
$ \color{blue} \text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.} $
- Click here to view student answers and discussions