Line 1: | Line 1: | ||
− | + | [[Category:ECE]] | |
− | + | [[Category:ECE438]] | |
− | + | [[Category:2013_Fall_ECE_438_Boutin]] | |
− | + | [[Category:problem solving]] | |
− | < | + | |
− | </ | + | [[Category:discrete time Fourier transform]] |
− | + | ||
− | + | = [[:Category:Problem_solving|Practice Problem]] on Discrete-time Fourier transform computation = | |
− | + | Compute the discrete-time Fourier transform of the following signal: | |
− | + | ||
− | + | <math> | |
− | + | x[n]= \sin \left( \frac{2 \pi }{100} n \right) | |
− | + | </math> | |
− | + | ||
− | < | + | (Write enough intermediate steps to fully justify your answer.) |
− | < | + | ---- |
− | + | ==Share your answers below== | |
− | < | + | You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too! |
− | < | + | |
− | < | + | '''No need to write your name: we can find out who wrote what by checking the history of the page.''' |
− | + | ---- | |
− | + | ===Answer 1=== | |
− | + | ||
− | + | ||
− | < | + | <math>x[n]=\sin \left( \frac{2 \pi}{100} \right)</math> |
− | + | ||
− | < | + | |
− | < | + | <math>x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)</math> |
− | + | ||
− | < | + | <math>X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}</math> |
− | + | ||
− | + | <math>X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)</math> | |
− | + | ||
− | + | ||
− | < | + | <math>X_(\omega) = \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right) by DTFT table</math> |
− | + | ||
− | < | + | ===Answer 2=== |
− | + | ||
− | < | + | First, write the original function as: |
− | + | <math>x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)</math> | |
− | < | + | |
− | + | Then, for w = [-pi, pi] | |
− | < | + | <math>X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)</math> |
− | < | + | |
− | + | <math>X_(\omega) = \frac{100}{2j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)</math> | |
− | + | ||
− | + | which is really is: | |
+ | |||
+ | <math>X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)</math> | ||
+ | |||
+ | |||
+ | ===Answer 3=== | ||
+ | We can separate the equation to the following function | ||
+ | |||
+ | <math>x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100} - e^\frac{- j 2 \pi n}{100} \right) </math> | ||
+ | |||
+ | Because based on Fourier transform equation, | ||
+ | |||
+ | <math>X_(\omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j \omega n}</math> | ||
+ | |||
+ | Substitute in x[n] | ||
+ | |||
+ | <math>X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right)</math> | ||
+ | |||
+ | From Discrete Fourier Transform pair, | ||
+ | |||
+ | <math> x[n] = e^{-j\omega_0 n} </math> DTFT to <math> X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) </math> | ||
+ | |||
+ | Hence, the function will be | ||
+ | |||
+ | <math> X_(\omega) = \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right) </math> | ||
+ | |||
+ | <math>x[n]=\sin \left( \frac{2\pi}{100} n \right)</math> | ||
+ | |||
+ | |||
+ | [[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013]] |
Revision as of 02:11, 13 September 2013
Contents
Practice Problem on Discrete-time Fourier transform computation
Compute the discrete-time Fourier transform of the following signal:
$ x[n]= \sin \left( \frac{2 \pi }{100} n \right) $
(Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
No need to write your name: we can find out who wrote what by checking the history of the page.
Answer 1
$ x[n]=\sin \left( \frac{2 \pi}{100} \right) $
$ x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right) $
$ X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n} $
$ X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right) $
$ X_(\omega) = \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right) by DTFT table $
Answer 2
First, write the original function as: $ x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right) $
Then, for w = [-pi, pi] $ X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right) $
$ X_(\omega) = \frac{100}{2j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right) $
which is really is:
$ X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right) $
Answer 3
We can separate the equation to the following function
$ x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100} - e^\frac{- j 2 \pi n}{100} \right) $
Because based on Fourier transform equation,
$ X_(\omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j \omega n} $
Substitute in x[n]
$ X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right) $
From Discrete Fourier Transform pair,
$ x[n] = e^{-j\omega_0 n} $ DTFT to $ X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) $
Hence, the function will be
$ X_(\omega) = \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right) $
$ x[n]=\sin \left( \frac{2\pi}{100} n \right) $