(Undo revision 58138 by Choi155 (Talk))
Line 1: Line 1:
<p><br />
+
[[Category:ECE]]
</p>
+
[[Category:ECE438]]
<h1> <a href=":Category:Problem solving">Practice Problem</a> on Discrete-time Fourier transform computation </h1>
+
[[Category:2013_Fall_ECE_438_Boutin]]
<p>Compute the discrete-time Fourier transform of the following signal:
+
[[Category:problem solving]]
</p><p><img _fckfakelement="true" _fck_mw_math="&#10;x[n]= \sin \left( \frac{2 \pi }{100} n  \right)&#10;" src="/rhea/images/math/b/f/0/bf0f97ec20b83c8416e3cd5d95395388.png" />
+
 
</p><p>(Write enough intermediate steps to fully justify your answer.)  
+
[[Category:discrete time Fourier transform]]
</p>
+
 
<hr />
+
= [[:Category:Problem_solving|Practice Problem]] on Discrete-time Fourier transform computation =
<h2>Share your answers below</h2>
+
Compute the discrete-time Fourier transform of the following signal:
<p>You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
+
 
</p><p><b>No need to write your name: we can find out who wrote what by checking the history of the page.</b>
+
<math>
</p>
+
x[n]= \sin \left( \frac{2 \pi }{100} n  \right)
<hr />
+
</math>
<h3>Answer 1</h3>
+
 
<p><img _fckfakelement="true" _fck_mw_math="x[n]=\sin \left( \frac{2 \pi}{100} \right)" src="/rhea/images/math/2/2/3/2231dd05d43da978a3499a964d730f15.png" />
+
(Write enough intermediate steps to fully justify your answer.)  
</p><p><br />
+
----
<img _fckfakelement="true" _fck_mw_math="x[n] = \frac{1}{2j}  \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)" src="/rhea/images/math/8/3/6/83609c9889b65fcd96711aed18f6111c.png" />
+
==Share your answers below==
</p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}" src="/rhea/images/math/2/b/d/2bd6e9f4f8c6f4d0c8ba6b2119288a9f.png" />
+
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
</p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)" src="/rhea/images/math/7/f/9/7f9ab2bb6f04aadec1f5789b52ed7e47.png" />
+
 
</p><p><br />
+
'''No need to write your name: we can find out who wrote what by checking the history of the page.'''
<img _fckfakelement="true" _fck_mw_math="X_(\omega) =  \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right)  by  DTFT  table" src="/rhea/images/math/6/1/8/61814381fa1ee34cad6f25374d24430a.png" />
+
----
</p>
+
===Answer 1===
<h3>Answer 2</h3>
+
 
<p>First, write the original function as:
+
 
<img _fckfakelement="true" _fck_mw_math="x[n] = \frac{1}{2j}  \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)" src="/rhea/images/math/8/3/6/83609c9889b65fcd96711aed18f6111c.png" />
+
<math>x[n]=\sin \left( \frac{2 \pi}{100} \right)</math>
</p><p>Then, for w = [-pi, pi]
+
 
<img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)" src="/rhea/images/math/7/f/9/7f9ab2bb6f04aadec1f5789b52ed7e47.png" />
+
 
</p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{100}{2j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)" src="/rhea/images/math/f/0/c/f0c3875a9621aabf1286b15e89b68e9f.png" />
+
<math>x[n] = \frac{1}{2j}  \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)</math>
</p><p>which is really is:
+
 
</p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)" src="/rhea/images/math/3/7/b/37b3b44a22cf3b61840a7c8bb4486eec.png" />
+
<math>X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}</math>
</p><p><br />
+
 
</p>
+
<math>X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)</math>
<h3>Answer 3</h3>
+
 
<p>We can separate the equation to the following function
+
 
</p><p><img _fckfakelement="true" _fck_mw_math="x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100}  - e^\frac{- j 2 \pi n}{100}  \right)  " src="/rhea/images/math/0/5/b/05ba7655493b0c4e3b694ba6fac0539c.png" />
+
<math>X_(\omega) =  \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right)  by  DTFT  table</math>
</p><p>Because based on Fourier transform equation,
+
 
</p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j \omega n}" src="/rhea/images/math/a/7/9/a79fed22e488f9ab5773eadadc46bcb0.png" />
+
===Answer 2===
</p><p>Substitute in x[n]
+
 
</p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right)" src="/rhea/images/math/b/2/8/b283311397523aab2fbcfa322f3b759f.png" />
+
First, write the original function as:
</p><p>From Discrete Fourier Transform pair,
+
<math>x[n] = \frac{1}{2j}  \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)</math>
</p><p><img _fckfakelement="true" _fck_mw_math=" x[n] = e^{-j\omega_0 n} " src="/rhea/images/math/1/1/9/119b4dfb4f6bcf5deb0663acaa69ca03.png" /> DTFT to <img _fckfakelement="true" _fck_mw_math=" X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right)  " src="/rhea/images/math/b/2/5/b25d82705497c4e62e1d068138dae962.png" />
+
 
</p><p>Hence, the function will be
+
Then, for w = [-pi, pi]
</p><p><img _fckfakelement="true" _fck_mw_math=" X_(\omega) =  \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right)  " src="/rhea/images/math/5/2/c/52cb905ce8f853f34e9fb0f152c902f0.png" />
+
<math>X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)</math>
</p><p><img _fckfakelement="true" _fck_mw_math="x[n]=\sin \left( \frac{2\pi}{100} n \right)" src="/rhea/images/math/b/f/0/bf0f97ec20b83c8416e3cd5d95395388.png" />
+
 
</p><p><br />
+
<math>X_(\omega) = \frac{100}{2j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)</math>
<a href="2013 Fall ECE 438 Boutin">Back to ECE438 Fall 2013</a>
+
 
</p><a _fcknotitle="true" href="Category:ECE">ECE</a> <a _fcknotitle="true" href="Category:ECE438">ECE438</a> <a _fcknotitle="true" href="Category:2013_Fall_ECE_438_Boutin">2013_Fall_ECE_438_Boutin</a> <a _fcknotitle="true" href="Category:Problem_solving">Problem_solving</a> <a _fcknotitle="true" href="Category:Discrete_time_Fourier_transform">Discrete_time_Fourier_transform</a>
+
which is really is:
 +
 
 +
<math>X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)</math>
 +
 
 +
 
 +
===Answer 3===
 +
We can separate the equation to the following function
 +
 
 +
<math>x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100}  - e^\frac{- j 2 \pi n}{100}  \right)  </math>
 +
 
 +
Because based on Fourier transform equation,
 +
 
 +
<math>X_(\omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j \omega n}</math>
 +
 
 +
Substitute in x[n]
 +
 
 +
<math>X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right)</math>
 +
 
 +
From Discrete Fourier Transform pair,
 +
 
 +
<math> x[n] = e^{-j\omega_0 n} </math> DTFT to <math> X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right)  </math>
 +
 
 +
Hence, the function will be
 +
 
 +
<math> X_(\omega) =  \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right)  </math>
 +
 
 +
<math>x[n]=\sin \left( \frac{2\pi}{100} n \right)</math>
 +
 
 +
 
 +
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013]]

Revision as of 02:11, 13 September 2013


Practice Problem on Discrete-time Fourier transform computation

Compute the discrete-time Fourier transform of the following signal:

$ x[n]= \sin \left( \frac{2 \pi }{100} n \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!

No need to write your name: we can find out who wrote what by checking the history of the page.


Answer 1

$ x[n]=\sin \left( \frac{2 \pi}{100} \right) $


$ x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right) $

$ X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n} $

$ X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right) $


$ X_(\omega) = \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right) by DTFT table $

Answer 2

First, write the original function as: $ x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right) $

Then, for w = [-pi, pi] $ X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right) $

$ X_(\omega) = \frac{100}{2j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right) $

which is really is:

$ X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right) $


Answer 3

We can separate the equation to the following function

$ x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100} - e^\frac{- j 2 \pi n}{100} \right) $

Because based on Fourier transform equation,

$ X_(\omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j \omega n} $

Substitute in x[n]

$ X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right) $

From Discrete Fourier Transform pair,

$ x[n] = e^{-j\omega_0 n} $ DTFT to $ X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) $

Hence, the function will be

$ X_(\omega) = \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right) $

$ x[n]=\sin \left( \frac{2\pi}{100} n \right) $


Back to ECE438 Fall 2013

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood