Line 9: Line 9:
 
----
 
----
  
== Share your answers below ==
+
== Share your answers below ==
  
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!  
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!  
  
'''No need to write your name: we can find out who wrote what by checking the history of the page.'''
+
'''No need to write your name: we can find out who wrote what by checking the history of the page.'''  
----
+
  
=== Answer 1 ===
+
----
  
 +
=== Answer 1  ===
  
 
<span class="texhtml">''x''[''n''] = ''n''<sup>2</sup>(''u''[''n'' + 2] − ''u''[''n'' − 1])</span>.  
 
<span class="texhtml">''x''[''n''] = ''n''<sup>2</sup>(''u''[''n'' + 2] − ''u''[''n'' − 1])</span>.  
Line 31: Line 31:
 
<span class="texhtml"> = ''X''(''z'') = (9 + 4''z''<sup> − 1</sup> + ''z''<sup> − 2</sup>) / (''z''<sup> − 3</sup>)</span>, for all z in complex plane.  
 
<span class="texhtml"> = ''X''(''z'') = (9 + 4''z''<sup> − 1</sup> + ''z''<sup> − 2</sup>) / (''z''<sup> − 3</sup>)</span>, for all z in complex plane.  
  
=== Answer 2 ===
+
=== Answer 2 ===
  
 
Muhammad Syafeeq Safaruddin  
 
Muhammad Syafeeq Safaruddin  
Line 47: Line 47:
 
<br>  
 
<br>  
  
=== Answer 3 ===
+
=== Answer 3 ===
  
 
Write it here.  
 
Write it here.  
  
=== Answer 4 ===
+
=== Answer 4 ===
  
Write it here.
+
Write it here.  
  
=== Answer 5 ===
+
=== Answer 5 ===
  
Tony Mlinarich
+
Tony Mlinarich  
  
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>
+
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>  
  
<math>X(z) = n^2(\delta (n+3)+\delta (n+2)+\delta (n+1)+\delta (n)+\delta (n-1)) z^{-n}</math>
+
<span class="texhtml">''X''(''z'') = ''n''<sup>2</sup>(δ(''n'' + 3) + δ(''n'' + 2) + δ(''n'' + 1) + δ(''n'') + δ(''n'' − 1))''z''<sup> − ''n''</sup></span>  
  
<span class="texhtml">''X''(''z'') = 9''z''<sup>3</sup> + 4''z''<sup>2</sup> + ''z'' + ''1/z''<\span>
+
<span class="texhtml">''X''(''z'') = 9''z''<sup>3</sup> + 4''z''<sup>2</sup> + ''z'' + ''1/z''&lt;\span&gt;
 +
</span>  
  
 +
<br> [[2013 Fall ECE 438 Boutin|Back to ECE438 Fall 2013 Prof. Boutin]]
  
[[2013 Fall ECE 438 Boutin|Back to ECE438 Fall 2013 Prof. Boutin]]
+
=== Answer 7  ===
  
[[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]]
+
Yixiang Liu
  
=== Answer 7 ===
+
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>  
 
+
Yixiang Liu
+
 
+
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>
+
  
<math>X(z) = \sum_{n=-\infty}^{+\infty} n^{2}[{u[n+3]-u[n-1]}]z^{-n}</math>
+
<math>X(z) = \sum_{n=-\infty}^{+\infty} n^{2}[{u[n+3]-u[n-1]}]z^{-n}</math>  
  
This expression equals to zero except n = -3, -2, -1
+
This expression equals to zero except n = -3, -2, -1  
  
so <math>X(z) = x[-3]z^{3} + x[-2]z^{2} + x[-1]z^{1} </math>
+
so <span class="texhtml">''X''(''z'') = ''x''[ 3]''z''<sup>3</sup> + ''x''[ 2]''z''<sup>2</sup> + ''x''[ 1]''z''<sup>1</sup></span>  
  
 
       = 9z^{3} + 4z^{2} + z
 
       = 9z^{3} + 4z^{2} + z
  
=== Answer 8 ===
+
=== Answer 8 ===
  
Xi Wang
+
Xi Wang  
  
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>
+
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>  
  
 
<span class="texhtml"> = ''X''(''z'') = (9''z''<sup> + 3</sup> + 4''z''<sup> + 2</sup> + ''z''. The range of the value of z is from negative infinity to positive infinity
 
<span class="texhtml"> = ''X''(''z'') = (9''z''<sup> + 3</sup> + 4''z''<sup> + 2</sup> + ''z''. The range of the value of z is from negative infinity to positive infinity
 +
</span>
  
=== Answer 9 ===
+
=== Answer 9 ===
  
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>
+
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>  
  
<math>X(z) = \sum_{n=-3}^{+1} x[n] z^{-n}</math>
+
<math>X(z) = \sum_{n=-3}^{+1} x[n] z^{-n}</math>  
  
<span class="texhtml"> = ''X''(''z'') = 9''z''<sup> + 3</sup> + 4''z''<sup> +2</sup> + ''z'' + 1</span> for all z in complex plane
+
<span class="texhtml"> = ''X''(''z'') = 9''z''<sup> + 3</sup> + 4''z''<sup> +2</sup> + ''z'' + 1</span> for all z in complex plane  
  
 +
<br>
  
 +
=== Answer 10  ===
  
=== Answer 10 ===
 
 
Cary Wood  
 
Cary Wood  
  
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>
+
<math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math>  
  
<math>X(z) = \sum_{n=-3}^{0} x[n] z^{-n}</math>
+
<math>X(z) = \sum_{n=-3}^{0} x[n] z^{-n}</math>  
  
<span class="texhtml"> = ''X''(''z'') = 9''z''<sup> + 3</sup> + 4''z''<sup> + 2</sup> + z, for all z in complex plane
+
<span class="texhtml"> = ''X''(''z'') = 9''z''<sup> + 3</sup> + 4''z''<sup> + 2</sup> + z, for all z in complex plane</span>
 +
 
 +
<br>
 +
 
 +
=== Answer 11  ===
 +
 
 +
Shiyu Wang
 +
 
 +
x[n] = n<sup>2</sup>(u[n + 3] − u[n − 1])
 +
 
 +
x[n] = n<sup>2 &nbsp; (-3=&lt; n &lt; 1)</sup>
 +
 
 +
<math>X(z) = \sum_{n=-3}^{0} n^2 z^{-n}</math>&nbsp; <br>
 +
 
 +
=== x(z)=9z<sup>3</sup>+4z<sup>2</sup>+z, for all z in complex plane except z=infinity ===
 +
 
 +
[[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]]

Revision as of 22:02, 12 September 2013

Practice Problem on Z-transform computation

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]= n^2 \left( u[n+3]- u[n-1] \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!

No need to write your name: we can find out who wrote what by checking the history of the page.


Answer 1

x[n] = n2(u[n + 2] − u[n − 1]).

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ = \sum_{n=-3}^{0} n^2 z^{-n} $

= 9z3 + 4z2 + z

= z3(9 + 4z − 1 + z − 2)

= X(z) = (9 + 4z − 1 + z − 2) / (z − 3), for all z in complex plane.

Answer 2

Muhammad Syafeeq Safaruddin

x[n] = n2(u[n + 3] − u[n − 1])

x[n] = n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n))

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-\infty}^{+\infty} n^2(\delta(n+3)+\delta(n+2)+\delta(n+1)+\delta(n)) z^{-n} $

X(z) = 9z3 + 4z2 + z + 1 for all z in complex plane


Answer 3

Write it here.

Answer 4

Write it here.

Answer 5

Tony Mlinarich

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

X(z) = n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n) + δ(n − 1))zn

X(z) = 9z3 + 4z2 + z + 1/z<\span>


Back to ECE438 Fall 2013 Prof. Boutin

Answer 7

Yixiang Liu

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-\infty}^{+\infty} n^{2}[{u[n+3]-u[n-1]}]z^{-n} $

This expression equals to zero except n = -3, -2, -1

so X(z) = x[ − 3]z3 + x[ − 2]z2 + x[ − 1]z1

      = 9z^{3} + 4z^{2} + z

Answer 8

Xi Wang

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

= X(z) = (9z + 3 + 4z + 2 + z. The range of the value of z is from negative infinity to positive infinity

Answer 9

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-3}^{+1} x[n] z^{-n} $

= X(z) = 9z + 3 + 4z +2 + z + 1 for all z in complex plane


Answer 10

Cary Wood

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-3}^{0} x[n] z^{-n} $

= X(z) = 9z + 3 + 4z + 2 + z, for all z in complex plane


Answer 11

Shiyu Wang

x[n] = n2(u[n + 3] − u[n − 1])

x[n] = n2   (-3=< n < 1)

$ X(z) = \sum_{n=-3}^{0} n^2 z^{-n} $ 

x(z)=9z3+4z2+z, for all z in complex plane except z=infinity

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett