Line 1: | Line 1: | ||
− | + | <p><br /> | |
− | + | </p> | |
− | + | <h1> <a href=":Category:Problem solving">Practice Problem</a> on Discrete-time Fourier transform computation </h1> | |
− | + | <p>Compute the discrete-time Fourier transform of the following signal: | |
− | + | </p><p><img _fckfakelement="true" _fck_mw_math=" x[n]= \sin \left( \frac{2 \pi }{100} n \right) " src="/rhea/images/math/b/f/0/bf0f97ec20b83c8416e3cd5d95395388.png" /> | |
− | + | </p><p>(Write enough intermediate steps to fully justify your answer.) | |
− | + | </p> | |
− | + | <hr /> | |
− | Compute the discrete-time Fourier transform of the following signal: | + | <h2>Share your answers below</h2> |
− | + | <p>You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too! | |
− | < | + | </p><p><b>No need to write your name: we can find out who wrote what by checking the history of the page.</b> |
− | x[n]= \sin \left( \frac{2 \pi }{100} n \right) | + | </p> |
− | </ | + | <hr /> |
− | + | <h3>Answer 1</h3> | |
− | (Write enough intermediate steps to fully justify your answer.) | + | <p><img _fckfakelement="true" _fck_mw_math="x[n]=\sin \left( \frac{2 \pi}{100} \right)" src="/rhea/images/math/2/2/3/2231dd05d43da978a3499a964d730f15.png" /> |
− | + | </p><p><br /> | |
− | + | <img _fckfakelement="true" _fck_mw_math="x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)" src="/rhea/images/math/8/3/6/83609c9889b65fcd96711aed18f6111c.png" /> | |
− | You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too! | + | </p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}" src="/rhea/images/math/2/b/d/2bd6e9f4f8c6f4d0c8ba6b2119288a9f.png" /> |
− | + | </p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)" src="/rhea/images/math/7/f/9/7f9ab2bb6f04aadec1f5789b52ed7e47.png" /> | |
− | + | </p><p><br /> | |
− | + | <img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right) by DTFT table" src="/rhea/images/math/6/1/8/61814381fa1ee34cad6f25374d24430a.png" /> | |
− | + | </p> | |
− | + | <h3>Answer 2</h3> | |
− | + | <p>First, write the original function as: | |
− | < | + | <img _fckfakelement="true" _fck_mw_math="x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)" src="/rhea/images/math/8/3/6/83609c9889b65fcd96711aed18f6111c.png" /> |
− | + | </p><p>Then, for w = [-pi, pi] | |
− | + | <img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)" src="/rhea/images/math/7/f/9/7f9ab2bb6f04aadec1f5789b52ed7e47.png" /> | |
− | < | + | </p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{100}{2j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)" src="/rhea/images/math/f/0/c/f0c3875a9621aabf1286b15e89b68e9f.png" /> |
− | + | </p><p>which is really is: | |
− | < | + | </p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)" src="/rhea/images/math/3/7/b/37b3b44a22cf3b61840a7c8bb4486eec.png" /> |
− | + | </p><p><br /> | |
− | < | + | </p> |
− | + | <h3>Answer 3</h3> | |
− | + | <p>We can separate the equation to the following function | |
− | < | + | </p><p><img _fckfakelement="true" _fck_mw_math="x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100} - e^\frac{- j 2 \pi n}{100} \right) " src="/rhea/images/math/0/5/b/05ba7655493b0c4e3b694ba6fac0539c.png" /> |
− | + | </p><p>Because based on Fourier transform equation, | |
− | + | </p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j \omega n}" src="/rhea/images/math/a/7/9/a79fed22e488f9ab5773eadadc46bcb0.png" /> | |
− | + | </p><p>Substitute in x[n] | |
− | First, write the original function as: | + | </p><p><img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right)" src="/rhea/images/math/b/2/8/b283311397523aab2fbcfa322f3b759f.png" /> |
− | < | + | </p><p>From Discrete Fourier Transform pair, |
− | + | </p><p><img _fckfakelement="true" _fck_mw_math=" x[n] = e^{-j\omega_0 n} " src="/rhea/images/math/1/1/9/119b4dfb4f6bcf5deb0663acaa69ca03.png" /> DTFT to <img _fckfakelement="true" _fck_mw_math=" X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) " src="/rhea/images/math/b/2/5/b25d82705497c4e62e1d068138dae962.png" /> | |
− | Then, for w = [-pi, pi] | + | </p><p>Hence, the function will be |
− | < | + | </p><p><img _fckfakelement="true" _fck_mw_math=" X_(\omega) = \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right) " src="/rhea/images/math/5/2/c/52cb905ce8f853f34e9fb0f152c902f0.png" /> |
− | + | </p><p><img _fckfakelement="true" _fck_mw_math="x[n]=\sin \left( \frac{2\pi}{100} n \right)" src="/rhea/images/math/b/f/0/bf0f97ec20b83c8416e3cd5d95395388.png" /> | |
− | < | + | </p><p><br /> |
− | + | <a href="2013 Fall ECE 438 Boutin">Back to ECE438 Fall 2013</a> | |
− | which is really is: | + | </p><a _fcknotitle="true" href="Category:ECE">ECE</a> <a _fcknotitle="true" href="Category:ECE438">ECE438</a> <a _fcknotitle="true" href="Category:2013_Fall_ECE_438_Boutin">2013_Fall_ECE_438_Boutin</a> <a _fcknotitle="true" href="Category:Problem_solving">Problem_solving</a> <a _fcknotitle="true" href="Category:Discrete_time_Fourier_transform">Discrete_time_Fourier_transform</a> |
− | + | ||
− | < | + | |
− | + | ||
− | + | ||
− | + | ||
− | We can separate the equation to the following function | + | |
− | + | ||
− | < | + | |
− | + | ||
− | Because based on Fourier transform equation, | + | |
− | + | ||
− | < | + | |
− | + | ||
− | Substitute in x[n] | + | |
− | + | ||
− | < | + | |
− | + | ||
− | From Discrete Fourier Transform pair, | + | |
− | + | ||
− | < | + | |
− | + | ||
− | Hence, the function will be | + | |
− | + | ||
− | < | + | |
− | + | ||
− | < | + | |
− | + | ||
− | + | ||
− | + |
Revision as of 18:07, 12 September 2013
Contents
<a href=":Category:Problem solving">Practice Problem</a> on Discrete-time Fourier transform computation
Compute the discrete-time Fourier transform of the following signal:
<img _fckfakelement="true" _fck_mw_math=" x[n]= \sin \left( \frac{2 \pi }{100} n \right) " src="/rhea/images/math/b/f/0/bf0f97ec20b83c8416e3cd5d95395388.png" />
(Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
No need to write your name: we can find out who wrote what by checking the history of the page.
Answer 1
<img _fckfakelement="true" _fck_mw_math="x[n]=\sin \left( \frac{2 \pi}{100} \right)" src="/rhea/images/math/2/2/3/2231dd05d43da978a3499a964d730f15.png" />
<img _fckfakelement="true" _fck_mw_math="x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)" src="/rhea/images/math/8/3/6/83609c9889b65fcd96711aed18f6111c.png" />
<img _fckfakelement="true" _fck_mw_math="X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}" src="/rhea/images/math/2/b/d/2bd6e9f4f8c6f4d0c8ba6b2119288a9f.png" />
<img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)" src="/rhea/images/math/7/f/9/7f9ab2bb6f04aadec1f5789b52ed7e47.png" />
<img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right) by DTFT table" src="/rhea/images/math/6/1/8/61814381fa1ee34cad6f25374d24430a.png" />
Answer 2
First, write the original function as: <img _fckfakelement="true" _fck_mw_math="x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)" src="/rhea/images/math/8/3/6/83609c9889b65fcd96711aed18f6111c.png" />
Then, for w = [-pi, pi]
<img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)" src="/rhea/images/math/7/f/9/7f9ab2bb6f04aadec1f5789b52ed7e47.png" />
<img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{100}{2j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)" src="/rhea/images/math/f/0/c/f0c3875a9621aabf1286b15e89b68e9f.png" />
which is really is:
<img _fckfakelement="true" _fck_mw_math="X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)" src="/rhea/images/math/3/7/b/37b3b44a22cf3b61840a7c8bb4486eec.png" />
Answer 3
We can separate the equation to the following function
<img _fckfakelement="true" _fck_mw_math="x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100} - e^\frac{- j 2 \pi n}{100} \right) " src="/rhea/images/math/0/5/b/05ba7655493b0c4e3b694ba6fac0539c.png" />
Because based on Fourier transform equation,
<img _fckfakelement="true" _fck_mw_math="X_(\omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j \omega n}" src="/rhea/images/math/a/7/9/a79fed22e488f9ab5773eadadc46bcb0.png" />
Substitute in x[n]
<img _fckfakelement="true" _fck_mw_math="X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right)" src="/rhea/images/math/b/2/8/b283311397523aab2fbcfa322f3b759f.png" />
From Discrete Fourier Transform pair,
<img _fckfakelement="true" _fck_mw_math=" x[n] = e^{-j\omega_0 n} " src="/rhea/images/math/1/1/9/119b4dfb4f6bcf5deb0663acaa69ca03.png" /> DTFT to <img _fckfakelement="true" _fck_mw_math=" X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) " src="/rhea/images/math/b/2/5/b25d82705497c4e62e1d068138dae962.png" />
Hence, the function will be
<img _fckfakelement="true" _fck_mw_math=" X_(\omega) = \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right) " src="/rhea/images/math/5/2/c/52cb905ce8f853f34e9fb0f152c902f0.png" />
<img _fckfakelement="true" _fck_mw_math="x[n]=\sin \left( \frac{2\pi}{100} n \right)" src="/rhea/images/math/b/f/0/bf0f97ec20b83c8416e3cd5d95395388.png" />
<a href="2013 Fall ECE 438 Boutin">Back to ECE438 Fall 2013</a>
<a _fcknotitle="true" href="Category:ECE">ECE</a> <a _fcknotitle="true" href="Category:ECE438">ECE438</a> <a _fcknotitle="true" href="Category:2013_Fall_ECE_438_Boutin">2013_Fall_ECE_438_Boutin</a> <a _fcknotitle="true" href="Category:Problem_solving">Problem_solving</a> <a _fcknotitle="true" href="Category:Discrete_time_Fourier_transform">Discrete_time_Fourier_transform</a>