Line 23: Line 23:
  
  
<math> x[n] = sin[2*pi/100*n]
+
<math> x[n] = sin[2*pi/100*n] <\math>
 +
 
 
<math> x[n] = 1/(2*j)*(exp(j*2*pi/100*n)-exp(-j*2*pi/100*n)) <\math>
 
<math> x[n] = 1/(2*j)*(exp(j*2*pi/100*n)-exp(-j*2*pi/100*n)) <\math>
  

Revision as of 15:52, 12 September 2013


Practice Problem on Discrete-time Fourier transform computation

Compute the discrete-time Fourier transform of the following signal:

$ x[n]= \sin \left( \frac{2 \pi }{100} n \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!

No need to write your name: we can find out who wrote what by checking the history of the page.


Answer 1

$ x[n] = sin[2*pi/100*n] <\math> <math> x[n] = 1/(2*j)*(exp(j*2*pi/100*n)-exp(-j*2*pi/100*n)) <\math> <math> X(w) = \sum \left( \right) <\math> ===Answer 2=== Write it here. ===Answer 3=== ---- [[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013]] $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett