(New page: =Homework 4, ECE438, Fall 2011, Prof. Boutin= Due Wednesday October 5, 2011 (in class) ---- ==Questions 1== Compute the DFT of the following signals b) <math class=...)
 
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:ECE438Fall2011Boutin]]
 +
[[Category:ECE438]]
 +
[[Category:ECE]]
 +
[[Category:signal processing]]
 +
[[Category:homework]]
 +
 
=Homework 4, [[ECE438]], Fall 2011, [[user:mboutin|Prof. Boutin]]=
 
=Homework 4, [[ECE438]], Fall 2011, [[user:mboutin|Prof. Boutin]]=
 
Due Wednesday October 5, 2011 (in class)
 
Due Wednesday October 5, 2011 (in class)
Line 5: Line 11:
 
Compute the DFT of the following signals  
 
Compute the DFT of the following signals  
  
b) <math class="inline">
+
a) <math class="inline">
 
x_1[n] = \left\{  
 
x_1[n] = \left\{  
 
\begin{array}{ll}
 
\begin{array}{ll}
Line 14: Line 20:
 
</math>  
 
</math>  
  
a) <math class="inline">x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} \pi )</math>
+
b) <math class="inline">x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n )</math>
  
  
Line 21: Line 27:
  
 
==Question 2 ==
 
==Question 2 ==
Compute the inverse DFT of  <math class="inline">X[k]= e^{j \pi k }+e^{j \frac{\pi}{2} k} </math>.
+
Compute the inverse DFT of  <math class="inline">X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} </math>.
  
  
Line 36: Line 42:
  
 
*Note: When asked to compute DFT of a periodic signal x[n], just use the fundamental period of x[n] as N. Same thing for the inverse DFT. -pm
 
*Note: When asked to compute DFT of a periodic signal x[n], just use the fundamental period of x[n] as N. Same thing for the inverse DFT. -pm
 +
 +
For Q1,b and c, can we just list the complex exponential and say "by comparing to the DFT pairs we can get the answer X[k]=blah" ?
 +
:Yes, you should! -pm
  
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438, Fall 2011, Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438, Fall 2011, Prof. Boutin]]

Latest revision as of 02:55, 31 August 2013


Homework 4, ECE438, Fall 2011, Prof. Boutin

Due Wednesday October 5, 2011 (in class)


Questions 1

Compute the DFT of the following signals

a) $ x_1[n] = \left\{ \begin{array}{ll} 1, & n \text{ multiple of } N\\ 0, & \text{ else}. \end{array} \right. $

b) $ x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n ) $


c) $ x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n $

Question 2

Compute the inverse DFT of $ X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} $.



Question 3

Under which circumstances can one explicitly reconstruct the DTFT of a finite duration signal from its DFT? Justify your answer mathematically.


Question 4

Prove the time shifting property of the DFT.


Discussion

Write your questions/comments here

  • Note: When asked to compute DFT of a periodic signal x[n], just use the fundamental period of x[n] as N. Same thing for the inverse DFT. -pm

For Q1,b and c, can we just list the complex exponential and say "by comparing to the DFT pairs we can get the answer X[k]=blah" ?

Yes, you should! -pm

Back to ECE438, Fall 2011, Prof. Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett