(New page: Define <math>(f\ast g)(x) = \int_{\mathbb{R}^{n}}f(x-y)g(y)dy</math>. Show that <math>L^{p}(\mathbb{R}^{n})\ast L^{q}(\mathbb{R}^{n})</math> <math>\subset L^{r}(\mathbb{R}^{n}), 1+1/r = 1/...) |
|||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:MA598RSummer2009pweigel]] | ||
+ | [[Category:MA598]] | ||
+ | [[Category:math]] | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:real analysis]] | ||
+ | |||
+ | == Problem #7.1, MA598R, Summer 2009, Weigel == | ||
+ | Back to [[The_Pirate's_Booty]] | ||
+ | |||
Define <math>(f\ast g)(x) = \int_{\mathbb{R}^{n}}f(x-y)g(y)dy</math>. Show that <math>L^{p}(\mathbb{R}^{n})\ast L^{q}(\mathbb{R}^{n})</math> | Define <math>(f\ast g)(x) = \int_{\mathbb{R}^{n}}f(x-y)g(y)dy</math>. Show that <math>L^{p}(\mathbb{R}^{n})\ast L^{q}(\mathbb{R}^{n})</math> | ||
<math>\subset L^{r}(\mathbb{R}^{n}), 1+1/r = 1/p + 1/q, 1<p,q,r<\infty</math> | <math>\subset L^{r}(\mathbb{R}^{n}), 1+1/r = 1/p + 1/q, 1<p,q,r<\infty</math> | ||
Line 7: | Line 16: | ||
<math>\leq \bigg[\int_{\mathbb{R}^{n}}f(x-y)^{p}g(y)^{q}dy\bigg]^{1/r}\cdot \bigg[\int_{\mathbb{R}^{n}}f(x-y)^{(1-p/r)q'}dy\bigg]^{1/q'}\cdot</math> | <math>\leq \bigg[\int_{\mathbb{R}^{n}}f(x-y)^{p}g(y)^{q}dy\bigg]^{1/r}\cdot \bigg[\int_{\mathbb{R}^{n}}f(x-y)^{(1-p/r)q'}dy\bigg]^{1/q'}\cdot</math> | ||
− | <math>\bigg[\int_{\mathbb{R}^{n}}g(y)^{(1-q/r)p'}dy\bigg]^{1/p'}</math> | + | <math>\bigg[\int_{\mathbb{R}^{n}}g(y)^{(1-q/r)p'}dy\bigg]^{1/p'}</math> (Holder's inequality for three functions) |
+ | |||
+ | where <math>\frac{1}{r} +\frac{1}{p'} +\frac{1}{q'} = \frac{1}{r}+\bigg(1-\frac{1}{p}\bigg)+\bigg(1-\frac{1}{q}\bigg)=1</math> | ||
+ | |||
+ | and one can check that <math>(1-\frac{p}{r})q'=p</math> and <math>(1-\frac{q}{r})p'=q</math> | ||
+ | |||
+ | therefore, we have (so far) that <math>(f\ast g)\leq \bigg[\int_{\mathbb{R}^{n}}f(x-y)^{p}g(y)^{q}dy\bigg]^{1/r}\cdot \|f\|_{p}^{p/q}</math> | ||
+ | <math>\cdot \|g\|_{q}^{q/p}=\bigg[\int_{\mathbb{R}^{n}}f(x-y)^{p}g(y)^{q}dy\bigg]^{1/r}\cdot 1\cdot 1</math> | ||
+ | |||
+ | Or, in other words, <math>(f\ast g)^{r}\leq f^{p}\ast g^{q}</math> | ||
+ | |||
+ | We just need to show that <math>\|f^{p}\ast g^{q}\|_{1} = \|f^{p}\|_{1}\|g^{q}\|_{1}=\|f\|_{p}^{p}\|g\|_{q}^{q} =1</math> and we are done since | ||
+ | |||
+ | <math>\int(f\ast g)^{r}dx\leq \|f^{p}\ast g^{q}\|_{1}<\infty</math> by the previous line | ||
+ | |||
+ | To prove the claim, we just need to show that <math>\|f\ast g\|_{1}=\|f\|_1\cdot\|g\|_1</math> | ||
+ | |||
+ | Since <math>(f\ast g)</math> is a measurable function in <math>\mathbb{R}^{2n}</math> we can apply Fubini's Theorem | ||
+ | |||
+ | Thus, <math>\int (f\ast g)(x)dx =\int dx\int f(x-y)g(y)dy = \int g(y)dy\cdot\int f(x-y)dx =\|f\|_1\cdot\|g\|_1</math> | ||
+ | |||
+ | Q.E.D | ||
+ | --[[User:Rlalvare|Rlalvare]] 02:15, 28 July 2009 (UTC) | ||
+ | |||
+ | ---- | ||
+ | [[The_Pirate%27s_Booty|Back to the Pirate's Booty]] | ||
+ | |||
+ | [[MA_598R_pweigel_Summer_2009_Lecture_7|Back to Assignment 7]] | ||
+ | |||
+ | [[MA598R_%28WeigelSummer2009%29|Back to MA598R Summer 2009]] |
Latest revision as of 04:56, 11 June 2013
Problem #7.1, MA598R, Summer 2009, Weigel
Back to The_Pirate's_Booty
Define $ (f\ast g)(x) = \int_{\mathbb{R}^{n}}f(x-y)g(y)dy $. Show that $ L^{p}(\mathbb{R}^{n})\ast L^{q}(\mathbb{R}^{n}) $ $ \subset L^{r}(\mathbb{R}^{n}), 1+1/r = 1/p + 1/q, 1<p,q,r<\infty $
Proof: Without loss of generality assume $ \|f\|_{p} = \|g\|_{q} = 1 $
$ \int_{\mathbb{R}^{n}}f(x-y)g(y)dy = \int_{\mathbb{R}^{n}}[f(x-y)^{p/r}g(y)^{q/r}]f(x-y)^{1-p/r}g(y)^{1-q/r}dy $
$ \leq \bigg[\int_{\mathbb{R}^{n}}f(x-y)^{p}g(y)^{q}dy\bigg]^{1/r}\cdot \bigg[\int_{\mathbb{R}^{n}}f(x-y)^{(1-p/r)q'}dy\bigg]^{1/q'}\cdot $ $ \bigg[\int_{\mathbb{R}^{n}}g(y)^{(1-q/r)p'}dy\bigg]^{1/p'} $ (Holder's inequality for three functions)
where $ \frac{1}{r} +\frac{1}{p'} +\frac{1}{q'} = \frac{1}{r}+\bigg(1-\frac{1}{p}\bigg)+\bigg(1-\frac{1}{q}\bigg)=1 $
and one can check that $ (1-\frac{p}{r})q'=p $ and $ (1-\frac{q}{r})p'=q $
therefore, we have (so far) that $ (f\ast g)\leq \bigg[\int_{\mathbb{R}^{n}}f(x-y)^{p}g(y)^{q}dy\bigg]^{1/r}\cdot \|f\|_{p}^{p/q} $ $ \cdot \|g\|_{q}^{q/p}=\bigg[\int_{\mathbb{R}^{n}}f(x-y)^{p}g(y)^{q}dy\bigg]^{1/r}\cdot 1\cdot 1 $
Or, in other words, $ (f\ast g)^{r}\leq f^{p}\ast g^{q} $
We just need to show that $ \|f^{p}\ast g^{q}\|_{1} = \|f^{p}\|_{1}\|g^{q}\|_{1}=\|f\|_{p}^{p}\|g\|_{q}^{q} =1 $ and we are done since
$ \int(f\ast g)^{r}dx\leq \|f^{p}\ast g^{q}\|_{1}<\infty $ by the previous line
To prove the claim, we just need to show that $ \|f\ast g\|_{1}=\|f\|_1\cdot\|g\|_1 $
Since $ (f\ast g) $ is a measurable function in $ \mathbb{R}^{2n} $ we can apply Fubini's Theorem
Thus, $ \int (f\ast g)(x)dx =\int dx\int f(x-y)g(y)dy = \int g(y)dy\cdot\int f(x-y)dx =\|f\|_1\cdot\|g\|_1 $
Q.E.D --Rlalvare 02:15, 28 July 2009 (UTC)